Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS

https://doi.org/10.24057/2071-9388-2015-8-1-4-15

Full Text:

Abstract

Complicated folded structures were recently recorded by radar survey in the lower portions of the Antarctic and Greenland ice sheets. From a geological point of view the Antarctic and Greenland ice sheets are considered as geological features, while the ice is classified as sedimentary or metamorphic rock. In this regard the genesis of the ice sheets is analyzed from the perspective of geodynamics and metamorphism, and complicated folded structures on radar profiles are interpreted as tectonic and metamorphic structures. This study considers the processes of three kinds of tectonic structures: glacial diapirs, glacial diapir folds and glacial intrusions. Radar profiles not only capture ice flow structure but can also detect the thermobaric field in ice sheet, and in this case the complicated folded structures are interpreted as representative of recorded metastable boundaries of ice recrystallization.

About the Authors

Alexey N. Markov
Polar Research Center, Jilin University
China


Pavel G. Тalalay
Polar Research Center, Jilin University
China


Dorthe Dahl-Jensen
Center for Ice and Climate, University of Copenhagen
Denmark


References

1. A fanas’yeva, M.A., N.Yu. Bardina, O.A. Bogatikov, I.I. Vishnevskaya, V.N. Gavrilova, M.N. Gurova, V.I. Kovalenko, N.N. Kononkova, L.N. Lipchanskaya, V.B. Naumov, V.S. Popov, V.I. Chernov, E.V. Sharkov, B.P. Yurgenson, V.V. Yarmolyuk (2001). Petrografiya i petrologiya magmaticheskikh, metamorficheskikh i metasomaticheskikh gornykh porod [Petrography and petrology of igneous, metamorphic and metasomatic rocks]. Moscow, Logos. [In Russian].

2. A lsop, G.I., J.P. Brown, I. Davison (1996). Salt tectonics. Spec. Publ. of the Geol. Soc. London.

3. Bell, R.E., F. Ferraccioli, T.T. Creyts, D. Braaten, H. Corr, I. Das, D. Damaske, N. Frearson, T.A. Jordan, K. Rose, M. Studinger, and M.J. Wolovick (2011). Widespread persistent thickening of the East Antarctic Ice Sheet by freezing from the base, Science, 331 (6024), 1592–1595, doi:10.1126/science.1200109.

4. Box, J.E. and K. Ski (2007). Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics. J. Glaciol. 53 (181), 257–265.

5. Bucher, K. and R. Grapes (2011). Petrogenesis of Metamorphic Rocks. 8th ed., Berlin, Heidelberg, Springer.

6. Budd, W.F. (1969). The Dynamics of Ice Masses, Issued by the Antarctic Division, Department of Supply, ANARE Scientific Reports, Series A (IV), Glaciology Publication, 108, Melbourn.

7. C avitte, M.G.P., D.D. Blankenship, D.A. Young, M.J. Siegert, and E. Le Meur (2013). Radar stratigraphy connecting Lake Vostok and Dome C., East Antarctica, constrains the EPICA/DMC ice core time scale. The Cryosphere Discuss., 7, 321–342, doi:10.5194/tcd-7-321-2013.

8. C horley, R.J., S.A. Schumm and D.E. Sugden (1984). Geomorphology, London, Methuen.

9. C uffey, K.M., and W.S.B. Paterson (2010). The Physics of Glaciers, 4th ed., Butterworth-Heineman / Elsevier, Burlington.

10. Fujita, S., S. Mae, and T. Matsuoka (1993). Dielectric anisotropy in ice Ih at 9.7 GHz. Ann. Glaciol., 17, 276–280.

11. Fujita, S., H. Maeno, S. Uratsuka, T. Furukawa, S. Mae, Y. Fujii, and O. Watanabe (1999). Nature of radio echo layering in the Antarctic ice sheet detected by a two-frequency experiment. J. Geophys. Res. 104 (B6), 13013–13024.

12. Fujita, S., T. Matsuoka, T. Ishida, K. Matsuoka and S. Mae (2000). A summary of the complex dielectric permittivity of ice in the megahertz range and its applications for radar sounding of polar ice sheets. In: Physics of Ice Core Records, ed. T. Hondoh, Hokkaido University Press: Sapporo, Japan, 185–212.

13. Gerya, T.V., L.L. Perchuk, D.D. van Reenen, and C.A. Smit (2000). Two-dimensional numerical modeling of pressure-temperature-time paths for the exhumation of some granulite facies terrains in the Precambrian. Journ. Geodynamics, 30, 17–35.

14. Khain, V.Ye., and M.G. Lomize (1995). Geotektonika s osnovami geodinamiki [Geotektonika and the basics of geodynamics]. Moscow State University Press. [In Russian with English summary].

15. Kudryashov, B.B., N.I. Vasiliev, R.N. Vostretsov, A.N. Dmitriev, V.M. Zubkov, A.V. Krasilev, P.G. Talalay, N.I. Barkov, V.Ya. Lipenkov, and J.R. Petit (2002). Deep ice coring at Vostok Station (East Antarctica) by electromechanical drill. Mem. of National Institute of Polar Research, 49, 91–102.

16. L avryushin, Yu.A. (1976). Stroenie i formirovanie osnovnikh moren materikivykh oledenenyi [Structure and formation of the main moraines of continental glaciation]. Moscow, Nauka. [In Russian].

17. Мatcheret, Yu.Yu. (2006). Radiozondirivanie lednikov [Radio sounding of glaciers]. Moscow, Nauchnyi Mir. [In Russian].

18. M atsuoka, K. T. Furukawa, S. Fujita, H. Maeno, S. Uratsuka, R. Naruse, and O. Watanabe (2003). Crystal orientation fabrics within the Antarctic ice sheet revealed by a multipolarization plane and dual-frequency radar survey, Journ. Geoph. Res., Earth Surface, 108, B10, 2499, doi:10.1029/2003JB002425.

19. NEEM community members (2013). Eemian interglacial reconstructed from a Greenland folded ice core, Nature, 493, 489–494, doi: 10.1038/nature11789.

20. P attyn, F. (2010). Antarctic subglacial conditions inferred from a hybrid ice sheet/ice stream model, 21. Earth Planet. Sci. Lett., 295 (3–4), 451–461, doi:10.1016/j.epsl.2010.04.025.

21. P opov, S.V., V.Ya. Lipenkov, V.V. Yenaliyeva, A.V. Preobrazhenskaya (2007). Vnutrenniye izokhronnyye poverkhnosti v rayone ozera Vostok, Vostochnaya Antarktida [Internal isochronous surface in region of Lake Vostok, East Antarctica), Problemy Arktiki i Antarktiki, 76, 89–95. [In Russian with English summary].

22. S erpukhov, V.I., T.V. Bilibina, A.I. Shalimov, I.F. Pustovalov, P.M. Borkovskyi, V.N. Morakhovskyi, K.N. Andreyanovskaya, I.A. Markov, and Yu.K. Dzevanovskyi (1976). Kurs obshchey geologii [Course of general geology]. Moscow, Nedra. [In Russian].

23. S cheidegger, A.E. (2004). Morphotectonics, Springer Verlag, Berlin.

24. W olovick M.J., R.E. Bell, T.T. Creyts, and N. Frearson (2013). Identification and control of subglacial water networks under Dome A, Antarctica, Journ. Geoph. Res.: Earth Surface, 118, 1–15, doi:10.1002/2012JF002555, 2013.

25. W right, A. and M.J. Siegert (2011). The identification and physiographical setting of Antarctic subglacial lakes: An update based on recent discoveries. In: Antarctic subglacial aquatic environments. Eds.: M.J. Siegert, M.C. Kennicutt II, and R.A. Bindschadler. Geophys. Monogr. Ser., 192, 1–7.

26. Zotikov, I. (1963). Bottom melting in the central zone of the ice shield of the Antarctic continent and its influence upon the present balance of the ice mass. Bull. Int. Assoc. Scient. Hydrol. 8 (1), 36.


For citation:


Markov A.N., Тalalay P.G., Dahl-Jensen D. INTERPRETATIONS OF COMPLICATED FOLDED STRUCTURES AT THE LOWER PARTS OF ANTARCTIC AND GREENLAND ICE SHEETS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2015;8(1):4-15. https://doi.org/10.24057/2071-9388-2015-8-1-4-15

Views: 218


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)