Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Zoning of the republic of Kazakhstan as to the risk of natural focal diseases in animals: the case of rabies and anthrax

https://doi.org/10.24057/2071-9388-2020-10

Full Text:

Abstract

Rabies and anthrax, being natural focal diseases, are characterized by the ability to persist in areas with a certain combination of environmental factors without human intervention. These infections annually cause sporadic outbreaks in domestic, livestock and wild animals in the Republic of Kazakhstan (RK) receiving close attention of the veterinary service. In particular, targeted mass vaccination and surveillance are conducted, which requires zoning of the country according to the exposure to the diseases.

This paper presents a zoning approach based on the estimation of suitability to the study diseases using the Environmental Niche Modelling method. Retrospective data on animal rabies outbreaks in the RK for 2003-2014, as well as data on anthrax burial sites for 1933-2014 were used. The following environmental factors were treated as potential explanatory variables: 1) a set of climate data derived variables BIOCLIM; 2) altitude above the sea level; 3) land cover type; 4) the maximum green vegetation fraction and 5) soil type.

The modelling outcomes for both diseases indicate elevated risks along the northern and southeastern borders of the RK that not only follows the distribution of historic disease cases, but also accounts for potentially suitable environmental conditions. To comply with the requirements of the veterinary service, gridded risk maps were converted into categorical maps by averaging risk values within municipal districts and ranking according to four categories: low, medium, high, and very high.

The maps obtained may be used as recommendations to the veterinary service as a basis for developing regionspecific anti-epizootic measures. 

About the Authors

Sarsenbay K. Abdrakhmanov
S.Seifullin Kazakh Agro Technical University
Kazakhstan
Nur-Sultan (Astana)


Yersyn Y. Mukhanbetkaliyev
S.Seifullin Kazakh Agro Technical University
Kazakhstan
Nur-Sultan (Astana)


Fedor I. Korennoy
Federal Center for Animal Health (FGBI ARRIAH)
Russian Federation
Vladimir


Kanatzhan K. Beisembayev
S.Seifullin Kazakh Agro Technical University
Kazakhstan
Nur-Sultan (Astana)


Ablaikhan S. Kadyrov
S.Seifullin Kazakh Agro Technical University
Kazakhstan
Nur-Sultan (Astana)


Anar M. Kabzhanova
S.Seifullin Kazakh Agro Technical University
Kazakhstan
Nur-Sultan (Astana)


Julie Adamchick
University of Minnesota
United States

Department of Veterinary Population Medicine, 

St. Paul



Gulzhan N. Yessembekova
S.Seifullin Kazakh Agro Technical University
Russian Federation
Nur-Sultan (Astana)


References

1. Abdrakhmanov S.K., Mukhanbetkaliyev Y.Y., Korennoy F.I. [et al.]. (2017). Maximum entropy modelling risk of anthrax in the Republic of Kazakhstan. Prevent. Vet. Med, Vol. 144, 149-157. DOI:10.1016/j.prevetmed.2017.06.003.

2. Abdrakhmanov S.K., Mukhanbetkaliyev E.E. and Kushubayev D.B. (2014). Visualization and cartographical analysis of the anthrax epizootic situation in Western and South-Western regions of Kazakhstan. Proceedings of KazNIVI “Towards theory and practice of today veterinary science, Vol. LX, 29-35.

3. Abdrakhmanov S.K., Sultanov A.A., Beisembayev K.K. [et al.]. (2016). Zoning the territory of the Republic of Kazakhstan as to the risk of rabies among various categories of animals. Geospat. Health,Vol. 11, 174-181. DOI:10.4081/gh.2016.429.

4. Abdrakhmanov S.K., Sytnic I.I. and Tursunkulov S.Zh. (2010). Visualization and analysis of veterinary and geographical rabies spread by using GIS technologies. Proceedings of Mat. V International scient.-pract. conf. (17-18 March 2010). Barnaul: Publishing house – AGAU. Book 3, 283-286 (in Russian);

5. Adamovich, V.L. and Nikonov, N.N. (1970). The importance of landscape-ecological factors in epizooto;ogy of anthrax. The journal of medical-epizootological researches, 8,113-117 (in Russian).

6. Aikembayev A.M., Lukhnova L., Temiraliyeva G., Meka-Mechenko T., Pazylov Y., Zakaryan S., Denissov G., Ryan Easterday W., Van Ert M.N., Keim P., Francesconi S.C., Blackburn J.K., Hugh-Jones M. and Hadfield T. (2010). Historical distribution and molecular diversity of bacillus anthracis, Kazakhstan. Emerg. Infect. Dis, 16, 789-796. DOI:10.3201/eid1605.091427

7. Anderson R.M., May R.M. (1992). Infectious diseases of humans. Dynamics and control. Oxford University Press, USA. Antyuganov S.N., Ryazanova A.G. and Eremenko, E.I. (2012). Anthrax in the Russian Federation and abroad. Epidemiology and infectious diseases: actual questions, 4, 4-8 (in Russian)/

8. Araújo M.B., Pearson R.G. (2005). Equilibrium of species’ distributions with climate. Ecography (Cop.). DOI:10.1111/j.2005.0906-7590.04253.x.

9. Bersagurov K.A. (2002). Epizootic and epidemiological situation of rabies in the West – Kazakhstan region and prevention measures. Official bulletin of the State Sanitary and Epidemiological Service of the Republic of Kazakhstan, P. 24-30 (in Russian).

10. Brown J.L. (2014). SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic, and species distribution model analyses. Methods in Ecology and Evolution. DOI: 10.1111/2041-210X.12200.

11. Broxton P.D., Zeng X., Scheftic W. and Troch P.A. (2014a).A MODIS-based global 1-km maximum green vegetation fraction dataset. J. Appl. Meteorol. Climatol. DOI:10.1175/JAMC-D-13-0356.1.

12. Broxton P.D., Zeng X., Sulla-Menashe D. and Troch P.A. (2014b). A global land cover climatology using MODIS data. J. Appl. Meteorol. Climatol. DOI:10.1175/JAMC-D-13-0270.1.

13. Cherkassky B.L. (1999). Territorial distribution and activity patterns of stationary unsafe anthrax sites. Epidemiology and infectious diseases, 2, 48-52.

14. Chubirko M.I., Chervanev V.A. and Efanova L.I. (2003). Epizootology of rabies in Voronezh region. In: Veterinary and medical aspects of zooanthroponosis. Pokrov, 102-107 (in Russian). Digital Soil Map of the World. URL: http://www.fao.org/geonetwork/srv/en/metadata.show?id=14116 [Accessed 24.10.2019]

15. Domsky I.A. (2002). Natural foci of rabies and its principal hosts. In: Veterinary Pathology, 1, 119-122 (in Russian).

16. Dudnikov S.A. (2003). Foxes as a marker of risk in a rabies: epizootological aspects. Veterinary and medical aspects of zooanthroponosis. Pokrov, pp. 69-73 (in Russian);

17. FAO EMPRES-i. – URL: http://empres-i.fao.org/eipws3g/ [Accessed 18.12.2019].

18. Hijmans R.J., Cameron S.E., Parra J.L. [et al.] (2005). Very high resolution interpolated climate surfaces for global land areas. Intern. J. Climatol. DOI:10.1002/joc.1276.

19. Hugh-Jones M. and Blackburn J. (2009). The ecology of Bacillus anthracis. Mol. Aspects Med. DOI:10.1016/j.mam.2009.08.003.

20. Kracalik I.T., Blackburn J.K., Lukhnova L., Pazilov Y., Hugh- Jones M.E. and Aikimbayev A. (2012). Analysing the spatial patterns of livestock anthrax in Kazakhstan in relation to environmental factors: a comparison of local (Gi*) and morphology cluster statistics. Geospatial Health, 7(1), 111-126.

21. Lukhnova L.Yu., Pazylov E.K., Meka-Mechenko T.V., Sarmantaeva A.B., Izbanova U.A., Myrzabekov A.M., Tuleuov A.M. and Ospanova G.M. (2013). The analysis of epizootological and epidemiological anthrax processes in Kazakhstan, 2002–2012. In. “Life with no threats”. Moscow. Vol VIII, 2, 66-72.

22. Makarov V.V., Sukhareva O.I., Gulyukin A.M. and Litvinov O.B. (2008). The trend of the rabies spread in Eastern Europe. Veterinary Medicine. 7, 20-22 (in Russian).

23. Maxent software for modelling species niches and distributions. URL: https://biodiversityinformatics.amnh.org/open_source/maxent/ [Accessed 01.11.2019].

24. Mullins J., Lukhnova L., Aikimbayev A., Pazilov Y., Van Ert M. and Blackburn J. (2011). Ecological Niche Modelling of the Bacillus anthracis A1.a sub-lineage in Kazakhstan. BMC Ecology, 11, 32. URL: http://www.biomedcentral.com/1472-6785/11/32.

25. Mullins J.C., Garofolo G., Van Ert M., Fasanella A., Lukhnova L. [et al.]. (2013). Ecological Niche Modelling of Bacillus anthracis on Three Continents: Evidence for Genetic-Ecological Divergence? PLoS ONE 8(8): e72451. DOI:10.1371/journal.pone.0072451.

26. Norstrøm М. (2001). Geographical Information System (GIS) as a Tool in Surveillance and Monitoring of Animal Diseases. Acta vet. scand. 95, 79-85.

27. Nouvellet P, Donnelly CA, De Nardi M, Rhodes CJ, De Benedictis P, Citterio C, Obber F, Lorenzetto M, Pozza MD, Cauchemez S and Cattoli G. (2013). Rabies and canine distemper virus epidemics in the red fox population of northern Italy (2006–2010). PLoS One, 8(4).

28. Orłowska A., Smreczak M., Trębas P. and Żmudziński J.F. (2011). Rabies outbreak in Małopolska region in Poland in 2010. Bull. Vet. Inst. Pulawy, 55 (4), 555-809.

29. Phillips, S.J., Dudík M. and Schapire R.E. (2004). A maximum entropy approach to species distribution modelling. Proc. Twenty-First Intern. Conf. on Machine Learning, 655-662.

30. Renner I.W., Warton D.I. (2013). Equivalence of MAXENT and poisson point process models for species distribution modelling in ecology. Biometrics. DOI:10.1111/j.1541-0420.2012.01824.x.

31. Robardet E., Ilieva D., Iliev E., Gagnev E., Picard-Meyer E., Cliquet F. (2013). Epidemiology and molecular diversity of rabies viruses in Bulgaria. Epidemiol Infect, 5, 1-7.

32. Sanzybayev, E.B. (2003). Modern features of the natural type rabies. In: Proceedings of the International Scientific-Practical Conference, Almaty, 10, 201-203 (in Russian).

33. Smreczak M., Orłowska A. and Żmudziński J.F. (2009). Rabies situation in Poland in 2008. Bull. Vet. Inst. Pulawy, 53 (4), 557-843.

34. Smreczak M., Orłowska A., Trębas P. and Żmudziński J.F. (2012). Rabies epidemiological situation in Poland in 2009 and 2010, Bull. Vet. Inst. Pulawy. 56 (2). pp. 115–266.

35. Stevens K.B. and Pfeiffer D.U. (2011). Spatial modelling of disease using data- and knowledge-driven approaches. Spat Spatiotemporal Epidemiol, Vol. 2, 125-133. DOI:10.1016/j.sste.2011.07.007.

36. USGS EarthExplorer Home. (2019). URL: https://earthexplorer.usgs.gov/ [Accessed 24.10.2019].

37. Youla A.S., Traore F.A., Sako F.B., Feda R.M. and Emeric M.A. (2014). Canine and human rabies in Conakry: epidemiology and preventive aspects. Bull SocPatholExot, 7, 19-21.

38. Zavodskih A.I. and Sludov A.I. (2007). The behavior of raccoon dogs infected with the rabies. Veterinary Medicine, 2, 15-16 (in Russian).

39. Zholshorinov A.Z. and Sansyzbayev Y.B. (2004). Surveillance of rabies in a wild-type centers of domination: the methodical recommendations. Astana, (in Russian).


For citation:


Abdrakhmanov S.K., Mukhanbetkaliyev Y.Y., Korennoy F.I., Beisembayev K.K., Kadyrov A.S., Kabzhanova A.M., Adamchick J., Yessembekova G.N. Zoning of the republic of Kazakhstan as to the risk of natural focal diseases in animals: the case of rabies and anthrax. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(1):134-144. https://doi.org/10.24057/2071-9388-2020-10

Views: 455


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)