Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Lake Physics In Changing Climate: Case Study Of Kosino Lakes (Moscow, Russia) In 1984-2023

https://doi.org/10.24057/2071-9388-2025-3505

Abstract

The one-dimensional lake model GLM was used to simulate the ice and stratification dynamics of two small lakes within Moscow City, Russia – lakes Beloe and Svyatoe of the Kosino Lake group. The model was calibrated on observation data from 2021–2023, and the significant trends of the lakes’ thermal and mixing regime were calculated based on the model run for the period of 1983–2023. Some of the most distinct changes are associated with ice phenology, as both lakes lose ice cover at 4.4–5.0 days/decade. The length of the stratified period does not significantly change, but the stability of stratification in dimictic Lake Beloe is increasing. Both lakes have experienced an increase in mean surface water temperature over the year between 0.22–0.26 °C/decade, which is two times lower than the observed trend in the local air temperature. In polymictic Lake Svyatoe, bottom water temperature also increases at a maximum of 0.65 °C/decade. The fastest changes in ice phenology, water temperature and stratification occurred before 2013, while in the last decade most parameters have stabilized, despite the growing intensity of climate warming. This might demonstrate how the lakes are compensating for some of the climate signal.

About the Authors

Maria Tereshina
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow, 119234



Oxana Erina
Lomonosov Moscow State University; Shenzhen MSU-BIT University
Russian Federation

Leninskie Gory 1, Moscow, 119234; Shenzhen, 518172, China



Dmitriy Sokolov
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow, 119234



Kristina Pilipenko
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow, 119234



Timur Labutin
Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow, 119234



References

1. Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W., Livingstone D.M., Sommaruga R., Straile D., Donk E., Weyhenmeyer G.A., and Winder M. (2009). Lakes as sentinels of climate change. Limnology and oceanography, 54(6), 2283-2297, DOI: 10.4319/lo.2009.54.6_part_2.2283.

2. Blenckner T., Adrian R., Livingstone D.M., Jennings E., Weyhenmeyer G.A., George D.G., Jankowski T., Järvinen M., Aonghusa C.N., Nõges T., Straile D., and Teubner K. (2007) Large-scale climatic signatures in lakes across Europe: a meta-analysis. Global Change Biology, 13, 1-13, DOI: 10.1111/j.1365-2486.2007.01364.x.

3. Bruce L.C., Frassl M.A., Arhonditsis G.B., Gal G., Hamilton D.P., Hanson P.C., Hetherington A.L., Melack J.M., Read J.S., Rinke K., Rigosi A., Trolle D., Winslow L., Busch R.D., Copetti D., Cortés A., de Eyto E., Elliott J.A., Gallina N., Gilboa Y., Guyennon N., Huang L., Kerimoglu O., Lenters J.D., MacIntyre S., Makler-Pick V., McBride C.G., Moreira S., Özkundakci D., Pilotti M., Rueda F.J., Rusak J.A., Samal N.R., Schmid M., Shatwell T., Snorthheim C., Soulignac F., Valerio G., van der Linden L., Vetter M., Vinçon-Leite B., Wang J., Weber M., Wickramaratne C., Woolway R.I., Yao H., and Hipsey M.R. (2018). A multi-lake comparative analysis of the General Lake Model (GLM): Stress-testing across a global observatory network. Environmental Modelling & Software, 102, 274-291, DOI: 10.1016/j.envsoft.2017.11.016.

4. Dokulil M. T., Teubner K., Jagsch A., Nickus U., Adrian R., Straile D., Jankowski T., Herzig A., and Padisák J. (2010). The impact of climate change on lakes in Central Europe. In: G. George, ed., The Impact of Climate Change on European Lakes. Aquatic Ecology Series, vol 4. Dordrecht: Springer, 387–409, DOI: 10.1007/978-90-481-2945-4_20.

5. Dokulil M.T., de Eyto E., Maberly S.C. May L., Weyhenmeyer G.A., and Woolway R.I. (2021). Increasing maximum lake surface temperature under climate change. Climatic Change, 165, 56, DOI: 10.1007/s10584-021-03085-1.

6. Gerten D. and Adrian R. (2001). Differences in the persistency of the North Atlantic Oscillation signal among lakes. Limnology and Oceanography, 46, 448–455, DOI: 10.4319/lo.2001.46.2.0448, 2001.

7. Golub M., Thiery W., Marcé R., Pierson D., Vanderkelen I., Mercado D., Woolway R., Grant L., Jennings E., Kraemer B., Schewe J., Zhao F., Frieler K., Mengel M., Bogomolov V., Bouffard D., Côté M., Couture R.-M., Debolskiy A., and Zdorovennova G. (2022). A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP Lake Sector. Geoscientific Model Development Discussions, 15(11), 4597-4623, DOI: 10.5194/gmd-15-4597-2022.

8. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz–Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., and Thépaut J.N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999-2049, DOI: 10.1002/qj.3803.

9. Higgins S.N., Desjardins C.M., Drouin H., Hrenchuk L.E., and van der Sanden J.J. (2021). The role of climate and lake size in regulating the ice phenology of boreal lakes. Journal of Geophysical Research: Biogeosciences, 126(3), e2020JG005898, DOI: 10.1029/2020JG005898.

10. Hipsey M.R., Bruce L.C., Boon C., Busch B., Carey C.C., Hamilton D.P., Hanson P., Read J., Sousa E., Weber M., and Winslow L.A. (2019). A General Lake Model (GLM 3.0) for linking with high-frequency sensor data from the Global Lake Ecological Observatory Network (GLEON). Geoscientific Model Development, 12(1), 473-523, DOI: 10.5194/gmd-12-473-2019.

11. Ho J.C., Michalak A.M., and Pahlevan N. (2019). Widespread global increase in intense lake phytoplankton blooms since the 1980s. Nature, 574(7780), 667-670, DOI: 10.1038/s41586-019-1648-7.

12. Hondzo M., Ellis C.R., Stefan H.G. (1991) Vertical diffusion in small stratified lake: Data and error analysis. Journal of hydraulic engineering, 117(10), 1352-1369, DOI: 10.1061/(ASCE)0733-9429(1991)117:10(1352)

13. Ishikawa M., Gonzalez W., Golyjeswski O., Sales G., Rigotti J.A., Bleninger T., Mannich M., and Lorke A. (2022). Effects of dimensionality on the performance of hydrodynamic models for stratified lakes and reservoirs. Geoscientific Model Development, 15(5), 2197-2220, DOI: 10.5194/gmd-15-2197-2022.

14. Jeppesen E., Meerhoff M., Davidson T.A., Trolle D., Søndergaard M., Lauridsen T.L., Beklioglu M., Brucet S., Volta P., Gonzalez-Bergonzoni I., and Nielsen A. (2014). Climate change impacts on lakes: An integrated ecological perspective based on a multi-faceted approach, with special focus on shallow lakes. Journal of Limnology, 73, 88-111, DOI: 10.4081/jlimnol.2014.844.

15. Kendall M.G. (1976). Rank Correlation Methods. New York: Oxford University Press.

16. Magee M.R. and Wu C.H. (2017). Response of water temperatures and stratification to changing climate in three lakes with different morphometry. Hydrology and Earth System Sciences, 21(12), 6253-6274, DOI: 10.5194/hess-2016-262.

17. Man X., Lei C., Carey C.C., and Little J.C. (2021) Relative Performance of 1-D Versus 3-D Hydrodynamic, Water-Quality Models for Predicting Water Temperature and Oxygen in a Shallow, Eutrophic, Managed Reservoir. Water, 13, 88, DOI: 10.3390/w13010088.

18. Mesman J.P., Ayala A.I., Adrian R., De Eyto E, Frassl M.A., Goyette S., Kasparian J., Perroud M., Stelzer J.A.A., Pierson D.C., and Ibelings B.W. (2020). Performance of one-dimensional hydrodynamic lake models during short-term extreme weather events. Environmental Modelling & Software, 133, 104852, DOI: 10.1016/j.envsoft.2020.104852.

19. Mesman J.P., Stelzer J.A.A., Dakos V., Goyette S., Jones I., Kasparian J., McGinnis D., and Ibelings B. (2021). The role of internal feedbacks in shifting deep lake mixing regimes under a warming climate. Freshwater Biology, 66, 1021-1035, DOI: 10.1111/fwb.13704.

20. Nishri A., Rimmer A., Lechinsky Y. (2015). The mechanism of hypolimnion warming induced by internal waves. Limnology and Oceanography, 60, 1462-1476, DOI: 10/1002/lno.10109

21. O’Reilly C.M., Sharma S., Gray D., Hampton S., Read J., Rowley R., Schneider P., Lenters J., McIntyre P., Kraemer B., Weyhenmeyer G., Straile D., Dong B., Adrian R., Allan M., Anneville O., Arvola L., Austin J., Bailey J., and Zhang G. (2015). Rapid and highly variable warming of lake surface waters around the globe, Geophysical Research Letters, 42(24), 10.773-10.781, DOI: 10.1002/2015GL066235.

22. Oleksy I.A. and Richardson D.C. (2021). Climate change and teleconnections amplify lake stratification with differential local controls of surface water warming and deep water cooling. Geophysical Research Letters, 48(5), e2020GL090959, DOI: 10.1029/2020GL090959.

23. Pilla R.M., Williamson C.E., Zhang J., Smyth R.L., Lenters J.D., Brentrup J.A., Knoll L., and Fisher T.J. (2018). Browning–related decreases in water transparency lead to long–term increases in surface water temperature and thermal stratification in two small lakes. Journal of Geophysical Research: Biogeosciences, 123(5), 1651-1665, DOI: 10.1029/2017JG004321.

24. Prats J., Reynaud N., Danis P.A. (2018). Application of the General Lake Model (GLM) to a large set of French water bodies. 5th IAHR Europe Congress “New Challenges in Hydraulic Research and Engineering”, Jun 2018, Trente, Italy. 337-338.

25. Read J.S., Winslow L.A., Hansen G.J., Van Den Hoek J., Hanson P.C., Bruce L.C., and Markfort C.D. (2014). Simulating 2368 temperate lakes reveals weak coherence in stratification phenology. Ecological modelling, 291, 142-150, DOI: 10.1016/j.ecolmodel.2014.07.029.

26. Schwefel R., Gaudard A.,Wüest A., and Bouffard D. (2016). Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): Comparing observational findings and modeling. Water Resources Research, 52(11), 8811–8826, DOI: 10.1002/2016WR019194.

27. Schwefel R., Müller B., Boisgontier H., and Wüest A. (2019). Global warming affects nutrient upwelling in deep lakes. Aquatic Sciences, 81(3), 50, DOI: 10.1007/s00027-019-0637-0.

28. Sharma S., Richardson D.C., Woolway R.I., Imrit M.A., Bouffard D., Blagrave K., Daly J., Filazzola A., Granin N., Korhonen J., Magnuson J., Marszelewski W., Matsuzaki S., Perry W., Robertson D., Rudstam L., Weyhenmeyer G., and Yao H. (2021). Loss of ice cover, shifting phenology, and more extreme events in Northern Hemisphere lakes. Journal of Geophysical Research: Biogeosciences, 126(10), e2021JG006348, DOI: 10.1029/2021JG006348.

29. Shirokova V. and Ozerova N. (2019). Kosino lakes as a craddle of Russian limnology: The history of the Kosino Biological Station and Kosino Nature Reserve. Voprosy istorii estestvoznaniia i tekhniki, 40(2), 233-253 (in Russian with English summary). DOI: 10.31857/S020596060004936-1.

30. Williamson C.E., Dodds W., Kratz T.K., and Palmer M. (2008). Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Frontiers in Ecology and the Environment, 6(5), 247-254, DOI: 10.1890/070140.

31. Winslow L.A., Leach T.H., and Rose K.C. (2018). Global lake response to the recent warming hiatus. Environmental Research Letters, 13, 054005, DOI: 10.1088/1748-9326/aab9d7.

32. Winslow L.A., Read J.S., Hansen G.J., and Hanson P.C. (2015). Small lakes show muted climate change signal in deepwater temperatures. Geophysical Research Letters, 42(2), 355-361, DOI: 10.1002/2014GL062325.

33. Woolway R.I., Kraemer B.M., Lenters J.D., Merchant C.J., O’Reilly C.M., and Sharma S. (2020). Global lake responses to climate change. Nature Reviews Earth & Environment, 1(8), 388-403, DOI: 10.1038/s43017-020-0067-5.

34. Woolway R.I., Kraemer B.M., Zscheischler J., and Albergel C. (2021). Compound hot temperature and high chlorophyll extreme events in global lakes. Environmental Research Letters, 16(12), 124066, DOI: 10.1088/1748-9326/ac3d5a.

35. Yao F., Livneh B., Rajagopalan B., Wang J., Crétaux J.F., Wada Y., and Berge-Nguyen M. (2023). Satellites reveal widespread decline in global lake water storage. Science, 380(6646), 743-749, DOI: 10.1126/science.abo2812.

36. Zhang G., Yao T., Xie H., Yang K., Zhu L., Shum C.K., Bolch T., Yi S., Allen S., Jiang L., Chen W., and Ke C. (2020). Response of Tibetan Plateau lakes to climate change - Trends, patterns, and mechanisms. Earth-Science Reviews, 208, 103269, DOI: 10.1016/j.earscirev.2020.103269.


Review

For citations:


Tereshina M., Erina O., Sokolov D., Pilipenko K., Labutin T. Lake Physics In Changing Climate: Case Study Of Kosino Lakes (Moscow, Russia) In 1984-2023. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(1):35-43. https://doi.org/10.24057/2071-9388-2025-3505

Views: 289


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)