Advanced search
Accepted Online



We analyzed four years field observations (2017–2020) of soil CO2 efflux from Chernozems of arable and foreststeppe ecosystems of Kursk region (Russia), which correspond to the period of the maximal current warming. Three wellknown simulation models of different structure and variable sets (DNDC, RothC, T&P) and nonparametric regression analysis were used to estimate annual CO2 emission from soil and contributions of constant and sporadic controls. The applied models satisfactorily predict both the rate of annual soil CO2 emission and its seasonal dynamics on arable Chernozems. However, while RothC is suitable for the whole set of crops considered, DNDC is most suitable for cereals and T&R for bare soils only. A comparison of the contributions of permanent and sporadic factors to soil respiration showed that on an inter-annual scale soil temperature and moisture are less important than yearly crop rotation in Chernozem plowlands, making the latter the most important predictor apart from general land-use type. Although the combination of significant permanent and sporadic factors is able to explain 41% of the soil CO2 emission variance, the leading involvement of spatial controls prevents the construction of quantitative regression models that are able to make forecasts, requiring the use of more sophisticated simulation models (i.e. RothC) in this case. However, the use of the latter does not yet solve the problem of predicting soil CO2 emission and its net balance in forest-covered or steppe areas of Chernozem forest-steppe landscape.


Disposal of production and consumption waste is a worldwide problem. Despite the experience of foreign countries, waste disposal practice in the Russian Federation remains at the level of the 1970s. The method of waste burial at landfill sites prevails, leading to a loss of secondary resources and the appearance of sites of accumulated environmental damage, which is connected with the lack of a clear legal framework for waste management activities. Analysis of waste accumulation standards for apartment buildings in 20 regions of the Russian Federation showed that the difference in accumulation standards can vary by 2.32 times (from 0.125 m3  in the Kursk region to 0.279 m3  in the Voronezh region). At the same time, the difference in the cost of solid waste removal services can be varied by 2.74 times from 51.55 rubles in the Altai Territory (on average in the region) to 141.45 rubles in the Tyumen region. At the same time, the share of the population with incomes below the subsistence minimum in different regions reaches 7 - 36%. This is largely due to the critically low recovery of secondary materials (about 7%). The capacity of landfills in the regions of the European part of Russia (where more than 2/3 of the population lives) is almost exhausted. Many landfills of solid waste are objects of accumulated environmental damage. The decision to introduce the «institute» of “regional environmental operators”, which was adopted at the level of the Russian Federation to implement the waste management reform, has not, yet had any positive effect. Given the constant deficit of the consolidated budgets of most regions, the high level of poverty and the lack of state support, the prospects for waste management reform indicate the need for additional efforts on the part of the state, business and society


In this paper, we describe an experiment of complex power grid structure and wind and sleet mapping of territory using two different network indices: standard edge betweenness centrality and new author’s index – electrical grid centrality. Such analysis of the network allows to identify power lines with high load which could be vulnerable elements of the power grid. It is very important for strategic planning of power grids to reduce the risk of accidents by distributing loads across several lines so that they will be able to reserve each other. As a case territory for this research, we took the Ural united power system in Russia which is greatly exposed to different sleet and wind according to the statistics of the power grid operator. The degree of natural hazard consequences could be compensated by the network structure through alternative paths of energy supply or vice versa – increased if they are absent. At the same time, in this paper we consider that power grids have their own features from the graph theory point of view, for example multiple (parallel) edges, branches, different types of vertices. The existing index of edge betweenness centrality does not perfectly cope with them. We compare two indices characterizing power line importance within the system – betweenness centrality and electrical grid centrality and analyze the network structure features together with the spatial distribution of sleet and wind. As a result, we could identify bottlenecks in the study network. According to this study the most vulnerable power lines were detected, for example 500 kV Iriklinskaya CHP – Gazovaya and 500 kV Yuzhnouralskaya CHP-2 – Shagol power lines, that supply big cities such as Chelyabinsk and Orenburg and a bunch of industries around them.


The requirements of the debris flows’ parameters assessments vary from country to country. They are based on different theoretical and empirical constructions and are validated by data from different regions. This makes difficult comparison of the reported results on estimated debris flows activity and extent. The Russian normative documents for the debris flows’ parameters calculations are based on empirically-measured parameters in wide range of geological and climatic conditions at the territory of former USSR, but still not cover all the possible conditions of debris flow formation. An attempt was made to check applicability of the Russian empirical constructions for the conditions of the debris flows formation in Yunnan, China, where unique long-term dataset of debris flows characteristics is collected by the Dongchuan Debris Flow Observation and Research Station. The results show, that in general the accepted in Russia methodology of calculation of the parameters of debris flows of certain probability corresponded well to the observed in Dongchuan debris flows characteristics. Some discrepancies (in the average debris flow depth) can be explained by unknown exact return period of the actually observed debris flows. This allowed to conclude that the presently adopted empirical dependencies based on country-wide (USSR) empirical data can be extrapolated up to the monsoon climate and geological conditions of Yunnan province.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)