Urban Green Infrastructure of Russian South: Spatial Justice - Ecological Efficiency Nexus
https://doi.org/10.24057/2071-9388-2025-3691
Abstract
The incorporation of nature-based solutions into urban planning and development policies has become a pressing issue in many large cities worldwide, aiming to improve the urban environment and the well-being of city-dwellers. However, the establishment and management of urban green infrastructure can be expensive and may lead to spatial injustice or be ecologically inefficient due to the planning decisions. This study focuses on the Spatial Justice-Ecological Efficiency Nexus of urban green infrastructure in large Caucasian cities of Russia, where urbanization rates are rapidly increasing. The hypothesis of this study is that green infrastructure in Russian cities predominantly has an ecological aspect, meaning that it provides a large volume of ecosystem services that are still unavailable to a significant portion of the urban population. To explore this topic, we aim to assess the balance between the social and ecological aspects of green infrastructure in six case study cities, including Makhachkala, Grozny, Nalchik, Maykop, Vladikavkaz, and Stavropol. The assessment framework includes 12 indicators, divided into two categories: spatial justice (6 indicators) and ecological efficiency (6 indicators). The spatial justice indicators assess the availability, accessibility, and distribution of green infrastructure, while the ecological efficiency indicators evaluate the performance of regulating and supporting ecosystem services. The results revealed that despite the common prevalence of ecological side in large Russian cities, the spatial justice side in the southern cities generally dominates over the ecological side, with most cities having an unbalanced nexus. Green infrastructure in the studied cities has a low ecological input, with a mean total score of around 300 points (out of 600), with most cities lacking protected areas and green areas beyond the edge effect. Meanwhile, the social side of the nexus is more developed, with an average score of 400. The study highlights the need for a more integrated approach to urban green infrastructure planning, considering both justice and ecological aspects to ensure a more just and sustainable urban environment. Overall, in this research we introduce a multidimensional approach to understanding the functions and qualities of green infrastructure that will allow for a more comprehensive assessment and planning of the rapidly growing southern cities. This study contributes to the understanding of the complex relationships between urban green infrastructure spatial justice and ecological efficiency, providing valuable insights for urban planners, policymakers, and stakeholders seeking to create more sustainable and equitable urban environment.
Keywords
About the Authors
Olga A. IllarionovaRussian Federation
Leninskie Gory, GSP-1, Moscow, 119991
Oxana A. Klimanova
Russian Federation
Leninskie Gory, GSP-1, Moscow, 119991
Elizaveta V. Grechman
Russian Federation
Leninskie Gory, GSP-1, Moscow, 119991
References
1. Amaral M.H., Benites-Lazaro L.L., de Almeida Sinisgalli P.A., da Fonseca Alves H.P., & Giatti L.L. (2021). Environmental injustices on green and blue infrastructure: Urban nexus in a macrometropolitan territory. Journal of Cleaner Production, 289, 125829, DOI: 10.1016/j.jclepro.2021.125829.
2. Anguelovski I., Connolly J., Cole H., Garcia-Lamarca M., Triguero-Mas M., Baró F., Martin N., Conesa D., Shokry G., del Pulgar C., Ramos L., Matheney A., Gallez E., Oscilowicz E., Máñez J., Sarzo B., Beltrán M. and Minaya J. (2022). Green gentrification in European and North American cities. Nature communications, 13, 3816, DOI: 10.1038/s41467-022-31572-1.
3. Basnou C., Baró F., Langemeyer J., Castell C., Dalmases C. and Pino J. (2020). Advancing the green infrastructure approach in the Province of Barcelona: Integrating biodiversity, ecosystem functions and services into landscape planning. Urban Forestry & Urban Greening, 55, 126797, DOI: 10.1016/j.ufug.2020.126797.
4. Bolliger J., Silbernagel J. (2020). Contribution of connectivity assessments to green infrastructure. ISPRS International Journal of GeoInformation, 9, 4, 212, DOI: 10.3390/ijgi9040212.
5. Borelli S., Conigliaro M. and Di Cagno F. (2023). Urban forests: a global perspective. Rome: FAO, DOI: 10.4060/cc8216en.
6. Breuste J. (2023). The green city: general concept. In: J. Breuste, M. Artmann, C. Ioja, S. Qureshi, eds., Making Green Cities. Springer, Cham., 3-18, DOI: 10.1007/978-3-030-73089-5_1.
7. Cousins J. and Hill D. (2021). Green infrastructure, stormwater, and the financialization of municipal environmental governance. Journal of Environmental Policy & Planning, 23(5), 581-598, DOI: 10.1080/1523908X.2021.1893164.
8. Danilina N., Tsurenkova K., Berkovich V. (2021). Evaluating urban green public spaces: The case study of Krasnodar region cities, Russia. Sustainability, 13, 24, 14059, DOI: 10.1016/j.ufug.2018.02.011.
9. de Oliveira J., Bellezoni A., Shih W., Bayulken B. (2022). Innovations in Urban Green and Blue Infrastructure: Tackling local and global challenges in cities. Journal of Cleaner Production, 362, 132355, DOI: 10.1016/j.jclepro.2022.132355.
10. Depietri Y. (2022). Planning for urban green infrastructure: addressing tradeoffs and synergies. Current Opinion in Environmental Sustainability, 54, 101148, DOI: 10.1016/j.cosust.2021.12.001.
11. Evans D., Falagán N., Hardman C., Kourmpetli S., Liu L., Mead B. and Davies J. (2022). Ecosystem service delivery by urban agriculture and green infrastructure–a systematic review. Ecosystem Services, 54, 101405, DOI: 10.1016/j.ecoser.2022.101405.
12. Fahrig L. (2020). Why do several small patches hold more species than few large patches? Global Ecology and Biogeography, 29(4), 615- 628, DOI: 10.1111/geb.13059.
13. Farrell C., Livesley S., Arndt S., Beaumont L., Burley H., Ellsworth D., Esperon-Rodriguez M., Fletcher T., Gallagher R., Ossola A., Power S., Marchin R., Rayner J., Rymer P., Staas L., Szota C., Williams N. and Leishman M. (2022). Can we integrate ecological approaches to improve plant selection for green infrastructure? Urban Forestry & Urban Greening, 76, 127732, DOI: 10.1016/j.ufug.2022.127732.
14. Ferreira J., Monteiro R. and Silva V. (2021). Planning a green infrastructure network from theory to practice: The case study of Setúbal, Portugal. Sustainability, 13(15), 8432, DOI: 10.3390/su13158432.
15. Escobedo F.J., Giannico V., Jim C.Y., Sanesi G., Lafortezza R. (2019). Urban forests, ecosystem services, green infrastructure and naturebased solutions: Nexus or evolving metaphors? Urban Forestry & Urban Greening, 37, 3-12, DOI: 10.1016/j.ufug.2018.02.011.
16. Jenkins J. and Pigram J. (2005). Outdoor recreation management. London: Routledge, DOI: 10.4324/9780203983584.
17. Illarionova O., Klimanova O. (2024). River zones as a tool for increasing the urban sustainability in large cities of Russia. E3S Web of Conferences, 555, 04003, DOI: 10.1051/e3sconf/202455504003.
18. Klimanova O., Kolbowsky E., Illarionova O. (2018). Impacts of urbanization on green infrastructure ecosystem services: The case study of post-soviet Moscow. Belgeo. Revue belge de géographie, 4, 30889, DOI: 10.4000/belgeo.30889.
19. Klimanova O., Illarionova O., Grunewald K., Bukvareva E. (2021). Green infrastructure, urbanization, and ecosystem services: The main challenges for Russia’s largest cities. Land, 10, 12, 1292, DOI: 10.3390/land10121292.
20. Klimanova O. A., Bukvareva E. N., Kolbowsky E. Y., Illarionova O. A. (2023). Assessing ecosystem services in Russia: Case studies from four municipal districts. Land Use Policy, 131, 106738, DOI: 10.1016/j.landusepol.2023.106738.
21. Kumar P., Druckman A., Gallagher J., Gatersleben B., Allison S., Eisenman T.S., Morawska L. (2019). The nexus between air pollution, green infrastructure and human health. Environment international, 133, 105181, DOI: 10.1016/j.envint.2019.105181.
22. Lampinen J., García-Antúnez O., Lechner A.M., Olafsson A.S., Gulsrud N.M., Raymond C.M. (2023). Mapping public support for urban green infrastructure policies across the biodiversity-climate-society-nexus. Landscape and Urban Planning, 239, 104856, DOI: 10.1016/j.landurbplan.2023.104856.
23. Lindholst A., Konijnendijk C., Kjoller C., Sullivan S., Kristoffersson A., Fors H. and Nilsson K. (2016). Urban green space qualities reframed toward a public value management paradigm: The case of the Nordic Green Space Award. Urban forestry and urban greening, 17, 166-176, DOI: 10.1016/j.ufug.2016.04.007.
24. Litvinova T. (2020). North Caucasus image inside Russia in the context of tourism cluster development. Geojournal of Tourism and Geosites, 28(1), 275-288, DOI: 10.30892/gtg.28122-469.
25. Liu O. and Russo A. (2021). Assessing the contribution of urban green spaces in green infrastructure strategy planning for urban ecosystem conditions and services. Sustainable Cities and Society, 68, 102772, DOI: 10.1016/j.scs.2021.102772.
26. Maroko A., Maantay J., Sohler N., Grady K. and Arno P. (2009). The complexities of measuring access to parks and physical activity sites in New York City: A quantitative and qualitative approach. International Journal of Health Geographics, 8(34), DOI: 10.1186/1476-072X-8-34.
27. Matasov V., Yaroslavtsev A., Bukin S., Konstantinov P., Vasenev V., Grigoreva V., Romzaykina O., Dvornikov Y., Sayanov A. and Maximova O. (2021). Ecosystem services approach for landscaping project: the case of metropolia residential complex. In: V. Vasenev, ed., Advanced Technologies for Sustainable Development of Urban Green Infrastructure. SSC 2020. Springer, Cham., 319-330, DOI: 10.1007/978-3-030-75285-9_29.
28. Meerow S., Natarajan M., Krantz, D. (2021). Green infrastructure performance in arid and semi-arid urban environments. Urban Water Journal, 18, 4, 275-285, DOI: 10.1080/1573062X.2021.1877741.
29. Miroshnyk N.V., Likhanov A.F., Grabovska T.O., Teslenko I.K., Roubík H. (2022). Green infrastructure and relationship with urbanization– Importance and necessity of integrated governance. Land Use Policy, 114, 105941, DOI: 10.1016/j.landusepol.2021.105941.
30. Rigolon A. and Collins T. (2023). The green gentrification cycle. Urban Studies, 60(4), 770-785, DOI: 10.1177/00420980221114952.
31. Shade C., Kremer P., Rockwell J. and Henderson K. (2020). The effects of urban development and current green infrastructure policy on future climate change resilience. Ecology & Society, 25(4), DOI: 10.5751/ES-12076-250437.
32. Shi L. (2020). Beyond flood risk reduction: How can green infrastructure advance both social justice and regional impact? SocioEcological Practice Research, 2, 311-320, DOI: 10.1007/s42532-020-00065-0.
33. Skachkova M. E. (2024). Urban Green Infrastructure Assessment: Identification of Public Green Spaces Misuse. Geography, Environment, Sustainability, 17(4), 183-197, DOI: 10.24057/2071-9388-2024-3458.
34. Teixeira C., Fernandes C., Ahern J., Honrado J. and Farinha-Marques P. (2021). Urban ecological novelty assessment: Implications for urban green infrastructure planning and management. Science of The Total Environment, 773, 145121, DOI: 10.1016/j.scitotenv.2021.145121.
35. Valente D., Pasimeni M. and Petrosillo I. (2020). The role of green infrastructures in Italian cities by linking natural and social capital. Ecological Indicators, 108, 105694, DOI: 10.1016/j.ecolind.2019.105694.
36. Varentsov M., Vasenev V., Dvornikov Y., Samsonov T., Klimanova O. (2023). Does size matter? Modelling the cooling effect of green infrastructures in a megacity during a heat wave. Science of the Total Environment, 902, 165966, DOI: 10.1016/j.scitotenv.2023.165966.
37. Wang C., Ren Z., Dong Y., Zhang P., Guo Y., Wang W. and Bao G. (2022). Efficient cooling of cities at global scale using urban green space to mitigate urban heat island effects in different climatic regions. Urban Forestry & Urban Greening, 74, 127635, DOI: 10.1016/j.ufug.2022.127635.
38. Yao J., Xu P. and Huang Z. (2021). Impact of urbanization on ecological efficiency in China: An empirical analysis based on provincial panel data. Ecological Indicators, 129, 107827, DOI: 10.1016/j.ecolind.2021.107827.
39. Yazar M. and York A. (2023). Nature-based solutions through collective actions for spatial justice in urban green commons. Environmental Science & Policy, 145, 228-237, DOI: 10.1016/j.envsci.2023.04.016.
Review
For citations:
Illarionova O.A., Klimanova O.A., Grechman E.V. Urban Green Infrastructure of Russian South: Spatial Justice - Ecological Efficiency Nexus. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(2):114-125. https://doi.org/10.24057/2071-9388-2025-3691