Advanced search

Forest Management In Mongolia – A Review Of Challenges And Lessons Learned With Special Reference To Degradation And Deforestation

Full Text:


The natural conditions, climate change and socio-economic challenges related to the transformation from a socialistic society towards a market-driven system make the implementation of sustainable land management practices in Mongolia especially complicated. Forests play an important role in land management. In addition to providing resources and ecosystem functions, Mongolian forests protect against land degradation.

We conducted a literature review of the status of forest management in Mongolia and lessons learned, with special consideration to halting deforestation and degradation. We grouped our review into seven challenges relevant to developing regionally adapted forest management systems that both safeguard forest health and consider socio-economic needs. In our review, we found that current forest management in Mongolia is not always sustainable, and that some practices lack scientific grounding. An overwhelming number of sources noticed a decrease in forest area and quality during the last decades, although afforestation initiatives are reported to have increased. We found that they have had, with few exceptions, only limited success. During our review, however, we found a number of case studies that presented or proposed promising approaches to (re-)establishing and managing forests. These studies are further supported by a body of literature that examines how forest administration, and local participation can be modified to better support sustainable forestry. Based on our review, we conclude that it is necessary to integrate capacity development and forest research into holistic initiatives. A special focus should be given to the linkages between vegetation cover and the hydrological regime.

About the Authors

Alexander Gradel
International Forestry Consultancy Gradel; formerly: Georg-August-Universität Göttingen Bad Oeynhausen; Faculty of Forest Sciences and Forest Ecology, Göttingen

Gerelbaatar Sukhbaatar
National University of Mongolia; Institute of Forest Science, National University of Mongolia Department of Environment and Forest Engineering, School of Engineering and Applied Sciences

Daniel Karthe
German-Mongolian Institute for Resources and Technology Engineering Faculty, Nalaikh

Hoduck Kang
Dongguk University Department of Biological and Environmental Science, Biomedi Campus
Korea, Republic of


1. Ammann H. (2002). Sektorendarstellung Holz. Unveröffentlichter Teilbericht zum GTZProjekt: Naturschutz und Randzonenentwicklung, Ulaanbaatar. (in German).

2. Angerer J., Han G., Fujisaki I. and Havstad K. (2008). Climate Change and Ecosystems of Asia with Emphasis on Inner Mongolia and Mongolia. Rangelands, 30(3), pp. 46-51. DOI:10.2111/1551-501X(2008)30[46:CCAEOA]2.0.CO;2

3. Balandin S.A., Basilov V.N., Wilke R.H.B., Camparasa J.M., Coupland R.T., Frade S., Fuller K., Ghilarov A.M., Given D.R., Harcourt C., Hart R.H., Junyent C., Mordkovitch V.G., Pesci R., Petelin D.A., Poch R.M., Porta J., Scott G.A.J., Sheftel B.I., Sokolova Z.P., Tishkov A.A., Beck M., Campillo X. and Vigo M. (2000). Encyclopedia of the biosphere (Vol. 8), Encyclopedia of the biosphere - Prairies and Taiga. Gale Group, Detroit (USA), p. 460.

4. Bastian O. (2000). Mongolei-Transformation und Umwelt in Zentralasien. Geographische Rundschau 52 (3), p. 17-23. (in German).

5. Batima P., Natsagdorj L., Gombluudev P. and Erdenetsetseg B. (2005). Observed climate change in Mongolia. AIACC Working Paper, [online] Vol. 13, 26 p. Available at: [Accessed 10 Jun. 2019].

6. Batimaa P., Batnasan N. and Bolormaa B. (2008). Climate change and water resources in Mongolia. In: Basandorj, B., Oyunbaatar, D. (Eds). International conference on uncertainties in water resource management: causes, technologies and consequences. IHP Technical Documents in Hydrology No. 1, Jakarta, pp. 7–12.

7. Batkhuu N.O., Lee D.K., Tsogtbaatar J. and Park Y.D. (2010). Seed quality of Siberian larch (Larix sibirica Ldb.) from geographically diverse seed sources in Mongolia'. Scandinavian Journal of Forest Research, 2(1), pp. 101-108. DOI:10.1080/02827581.2010.485815

8. Batkhuu N.O., Ser-Oddamba B. and Gerelbaatar S. (2017a). Forest and Landscape Restoration in Mongolia. International Conference on Landscape Restoration under Global Change. Poster presentation, San Juan, Puerto Rico, pp. 6-9.

9. Batkhuu N.O., Ser-Oddamba B. and Gerelbaatar S. (2017b). Forest and Landscape Restoration in Mongolia. Poster presentation at the International Conference on Forest Landscape Restoration under Global Change. San Juan, Puerto Rico pp.6-7.

10. Bayartogtokh B. (2000). New oribatid mites of the genus Belba (Acari: Oribatida: Damaeidae) from Mongolia. International Journal of Acarology Vol. 26, pp. 297–319.

11. Bei M.L., Wichmann F. and Mühlenberg M. (2003). The Abundance of Tree Holes and Their Utilization by Hole-Nesting Birds in a Primeval Boreal Forest of Mongolia. Acta Ornithologica, 38(2), pp. 95-102. Available at: [Accessed 10 Jun. 2019].

12. Benneckendorf W. (2011). Concept for Forestry Sector Development in Mongolia. Interne GIZ-Studie zum GIZProjekt: Climate Change and Biodiversity in Mongolia. Zunkharaa, 56 pp.

13. Blanc-Jolivet C., Yanbaev Y. and Degen B. (2018). Genetic timber tracking of Larix ssp. in Eurasia. Published in Degen B, Krutovsky KV, Liesebach M (2018), German-Russian Conference on Forest Genetics - Proceedings – Ahrensburg, 2017 November 21-23. Thünen Report, Vol. 62, pp. 89-93.

14. Bolte A., Ammer C., Löf M., Nabuurs G.J., Schall P. and Spathelf P. (2010). Adaptive Forest Management: A Prerequisite for Sustainable Forestry in the Face of Climate Change. Published in: Spathelf P (eds.) Sustainable Forest Management in a Changing World: A European Perspective. Springer Netherlands, pp. 115-139. DOI: 10.1007/978-90-481-33017_8

15. Bring A., Asokan S.M., Jaramillo F., Jarsjö J., Levi L., Pietroń J., Prieto C., Rogberg P. and Destouni G. (2015). Implications of freshwater flux data from the CMIP5 multimodel output across a set of Northern Hemisphere drainage basins. Earth’s Future, 3(6), pp. 206–217. DOI:10.1002/2014EF000296

16. Danilin, I.M. and Tsogt, Z. (2012). Restoration of forests at logging and burned areas in Mongolia. Problems of Regional Ecology, N. 1., pp. 7-13 (In Russian with English abstract).

17. Danilin, I.M. and Tsogt, Z. (2014). Dynamics of structure and biological productivity of postfire larch forests in the Northern Mongolia. Contemporary Problems of Ecology, 7(2), pp. 158-169. DOI: 10.1134/S1995425514020036

18. Davi N.K., Pederson N., Leland C., Baatarbileg N., Byambagerel S. and Jacoby G.C. (2013). Is eastern Mongolia drying? A long-term perspective of a multidecadal trend. Water Resources Research, 49, pp. 151-158. DOI: 10.1029/2012WR011834

19. De Grandpré L., Tardif J.C., Hessl A., Pederson N., Conciatori F., Green T.R., Oyunsanaa B. and Baatarbileg N. (2011). Seasonal shift in the climate responses of Pinus sibirica, Pinus sylvestris, and Larix sibirica trees from semi-arid, north-central Mongolia. Canadian Journal of Forest Research, 41(6), pp. 1242–1255. DOI: 10.1139/x11-051

20. Dorjsuren Ch (2014). Forest Ecosystems (in Climate change impact and exposure). Published in: Mongolia second assessment report on climate change – MARCC 2014. Ulaanbaatar: pp. 94-100.

21. Dugarzhav Ch. (1996). Larch Forests of Mongolia (Current Conditions and Reproduction). DSc (Agr.) Thesis (For. Sci. & Silviculture, Ecol.). Krasnoyarsk: V.N. Sukachev Institute of Forest, Rus. Acad. Sci., Siberian Br., 59 pp. (In Russian).

22. Dulamsuren Ch., Klinge M., Degener J., Khishigjargal M., Chenlemuge T., Bat–Enerel B., Yeruult Y., Saindovdon D., Ganbaatar K., Tsogtbaatar J., Leuschner C. and Hauck M. (2016). Carbon pool densities and a first estimate of the total carbon pool in the Mongolian forest–steppe. Global Change Biology, 22, pp. 830-844. DOI:10.1111/gcb.13127

23. Dulamsuren Ch., Hauck M., Leuschner H.H. and Leuschner C. (2011). Climate response of tree ring width in Larix sibirica growing in the drought-stressed forest-steppe ecotone of northern Mongolia. Annals of Forest Science, 68(2), pp. 275-282. DOI 10.1007/s13595-011-0043-9.

24. Dulamsuren Ch., Hauck M. and Leuschner C. (2010a). Recent drought stress leads to growth reductions in Larix sibirica in the western Khentey, Mongolia. Global Change Biology, 16, pp. 3024-3035. DOI: 10.1111/j.1365-2486.2009.02147.x

25. Dulamsuren Ch., Hauck M., Leuschner H.H. and Leuschner C. (2010b). Gypsy moth-induced growth decline of Larix sibirica in a forest-steppe ecotone. Dendrochronologia, 28, pp. 207- 213. DOI: 10.1016/j.dendro.2009.05.007

26. Dulamsuren Ch. and Hauk M. (2008). Spatial and seasonal variation of climate on steppe slopes of the northern Mongolian mountain taiga. Grassland Science, 54(4), pp. 217-230. DOI: 10.1111/j.1744-697X.2008.00128.x

27. Dulamsuren Ch., Hauck M. and Mühlenberg M. (2005). Vegetation at the taiga forest-steppe borderline in the Western Khentey Mountains, northern Mongolia. Annales Botanici Fennici Vol. 42, pp. 411-426.

28. Dulamsuren Ch. (2004). Floristische Diversität, Vegetation und Standortbedingungen in der Gebirgstaiga des Westkhentej, Nordmongolei. Berichte des Forschungszentrum Waldökosysteme, Reihe A, Bd. 191, Georg-August-Universität Göttingen, 290 pp. (in German).

29. Evans P. (2008). Project Status and Recommendations. Report on the project Capacity Building and Institutional Development for Participatory Natural Resources Management and Conservation in Forest Areas of Mongolia (GCP/MON/002/NET), 71 p.

30. FAO (2011). State of the world’s forest 2011. Rome: Food and Agriculture Organization, 164 pp.

31. Filep E., Bichsel C. (2018). Towards a research agenda on steppe imaginaries in Russia and the Soviet Union. Geography, Environment, Sustainability, 11(3), pp. 39-48. DOI:10.24057/2071-9388-2018-11-3-39-48

32. Forestry Agency of Buryatia (2019). In Buryatia, prescribed burning as prevention against fires begins. [online] Available at: OruzM80 [Accessed 10 Jun. 2019].

33. Gadow K.v. (2005). Forsteinrichtung. Analyse und Entwurf der Waldentwicklung. Universitätsverlag Göttingen, Reihe Universitätsdrucke, Göttingen, 342 S. (in German).

34. Gao R., Shi X. and Wang R. (2017). Comparative studies of the response of larch and birch seedlings from two origins to water deficit. New Zealand Journal of Forestry Science, 47(14). DOI:10.1186/s40490-017-0095-1

35. Ganchudur T. (2019). Reforestation to Combat Desertification in Degraded Sandy Soil Regions of Central Mongolia. Ph.D. Thesis (Dissertation), Dongguk University, Seoul, Republic of Korea, p. 159 pp.

36. Gebhardt T., Häberle K.H., Matyssek R., Schulz C. and Ammer C. (2014). The more, the better? Water relations of Norway spruce stands after progressive thinning intensities. Agricultural and Forest Meteorology, 197, pp. 235-243. DOI: 10.1016/j.agrformet.2014.05.013

37. Gerelbaatar S., Batsaikhan G., Tsogtbaatar J., Battulga P., Batarbileg N. and Gradel A. (2018a). Early survival and growth of planted Scots pine (Pinus sylvestris L.) seedlings in northern Mongolia. In: Book of Abstracts. P. Vossen D., Karthe B., Gunsmaa S., Enkhjargal S., ed., GMIT Symposium on Environmental Science and Engineering, Nalaikh, [online], pp. 8-9. Available at: pdf [Accessed 18 Feb. 2019].

38. Gerelbaatar S., Suran, B., Nachin, B. and Chultem D. (2018b). Effects of scots pine (Pinus sylvestris L.) plantations on plant diversity in northern Mongolia. Mongolian Journal of Biological Sciences, 16(1), pp. 59-70. DOI: 10.22353/mjbs.2018.16.08

39. Gerelbaatar S., Baatarbileg N., Battulga P., Batsaikhan G., Khishigjargal M., Batchuluun T. and Gradel A. (2019a). Which Selective Logging Intensity is Most Suitable for the Maintenance of Soil Properties and the Promotion of Natural Regeneration in Highly Continental Scots Pine Forests? – Results 19 Years after Harvest Operations in Mongolia. Forests, 10 (2): 141. DOI: 10.3390/f10020141

40. Gerelbaatar S., Batsaikhan G., Tsogtbaatar J., Battulga P., Baatarbileg N. and Gradel A. (2019b). Assessment of early survival and growth of planted Scots pine (Pinus sylvestris) seedlings under extreme continental climate conditions of northern Mongolia. Journal of Forestry Research. DOI: 10.1007/s11676-019-00935-8

41. Government of Mongolia (2018). Mongolia’s Forest Reference Level submission to the United Nations Framework Convention on Climate Change. UN-REDD Mongolia National Programme; Ministry of Environment and Tourism: Ulaanbaatar, Mongolia.

42. Gradel A., Voinkov A.A., Altaev A.A. and Enkhtuya B. (2018). A spatio-structural analysis of intact dark taiga in the southern taiga zone and an interval assessment of a dark conifer mixed forest in the mountain forest steppe zone (Mongolia). Proceedings of the Kuban State Agrarian University, 4(73), pp. 36-40. (in Russian).

43. Gradel, A. (2017). Reaktion von Waldbeständen am Rande der südlichen Taiga auf Klimafaktoren, natürliche und waldbauliche Störungen / Response of forest stands at the edge of the southern taiga to climate factors, natural and silvicultural disturbances. Ph.D. Thesis, Georg-August-Universität Göttingen, Germany; 191 pp.

44. Gradel A., Haensch C., Batsaikhan G., Batdorj D., Ochirragchaa N. and Günther B. (2017a). Response of white birch (Betula platyphylla Sukaczev) to temperature and precipitation in the mountain forest steppe and taiga of northern Mongolia. Asian Dendrochronology Association (ADA) 2015. Dendrochronologia, 41, pp. 24-33. DOI:

45. Gradel A., Batsaikhan G., Ochirragchaa N., Batdorj D. and Kusbach A. (2017b). Climategrowth relationships and pointer year analysis of a Siberian larch (Larix sibirica Ledeb.) chronology in the Mongolian mountain forest steppe compared to white birch (Betula platyphylla Sukazcev). Forest Ecosystems. 4:22. DOI: 10.1186/s40663-017-0110-2

46. Gradel A., Ammer C., Batsaikhan G., Ochirragchaa N., Batdorj D. and Wagner S. (2017c). On the Effect of Thinning on Tree Growth and Stand Structure of White Birch (Betula platyphylla Sukaczev) and Siberian Larch (Larix sibirica Ledeb.) in Mongolia. Forests, 8 (4), 105.

47. Gradel A. and Petrow W. (2014). Forstpolitische Entwicklungen im Transformationsland Mongolei. AFZ-Der Wald, 17, pp. 36-39. (in German).

48. Gradel A. and Mühlenberg M. (2011). Spatial characteristics of near-natural Mongolian forests at the southern edge of the taiga. Allgemeine Forst- und Jagd-Zeitung, 182(3/4), pp. 40-52. Available at: [Accessed 10 Dec. 2018].

49. Graham R.T., McCaffrey S. and Jain T.B. (2004). Science Basis for Changing Forest Structure to Modify Wildfire Behavior and Severity; General Technical Report RMRS-GTR-120; USDA Forest Service Rocky Mountain Research Station: Fort Collins, CO, USA, p. 43.

50. Grubov I.V. (2001). Key to the vascular plants of Mongolia (with an atlas). Volumes I and II. Science Publishers Inc: Enfield, USA. 817 pp.

51. Hartwig J. (2007). Die Vermarktung der Taiga. Die Politische Ökologie der Nutzung von Nicht-Holz-Waldprodukten und Bodenschätzen in der Mongolei (Erdkundl. Wissen Bnd. 143). (Zugl.: Dissertation, Fakultät für Forst- und Umweltwissenschaften der AlbertLudwigs-Universität Freiburg i. Br., 2006), [online], p. 445. Available at: [Accessed 18 Feb. 2019]. (in German).

52. Hartwig M., Schäffer M., Theuring P., Avlyush S., Rode M. and Borchardt D. (2016). Cause– effect–response chains linking source identification of eroded sediments, loss of aquatic ecosystem integrity and management options in a steppe river catchment (Kharaa, Mongolia). Environmental Earth Sciences, 75: 855. DOI:10.1007/s12665-015-5092-1

53. Hartwig M. and Borchardt, D. (2014). Alteration of key hyporheic functions through biological and physical clogging along a nutrient and fine-sediment gradient. Ecohydrology, 8(5), pp. 961-975. DOI: 10.1002/eco.1571

54. Hessl A.E., Anchukaitis K.J., Jelsema C., Cook B., Oyunsanna B., Leland C., Baatarbileg N., Pederson N., Tian H. and Hayles L.A. (2018). Past and future droughts in Mongolia. Science Advances 4: e1701832. DOI: 10.1126/sciadv.1701832

55. Hessl A.E., Brown P., Oyunsannaa B., Cockrell Sh., Leland C., Cook E., Baatarbileg N., Pederson N., Saladyga T and Byambagarei S. (2016). Fire and Climate in Mongolia (1532-2010 Common Era): Fire and Climate in Mongolia. Geophysical Research Letters. Geophysical Research Letters. DOI:10.1002/2016GL069059

56. Hilbig W. (2000). Forest distribution and retreat in the forest steppe ecotone of Mongolia. Marburger Geographische Schriften Vol. 135, pp. 171-187.

57. Hilbig W. and Mirkin B.M. (1983). Entwicklung und Stand der geobotanischen Forschung über die Mongolische Volksrepublik". In: Institut für Biologie der Martin-Luther-Universität Halle-Wittenberg (eds): Erforschung biologischer Ressourcen der Mongolei (3), Halle/ Saale: [online], pp. 33-46. Available at: [Accessed 18 Feb. 2019]. (in German).

58. Hülsmann L., Geyer T., Schweitzer C., Priess J. and Karthe D. (2015). The effect of subarctic conditions on water resources: initial results and limitations of the SWAT Model applied to the Kharaa River Basin in Northern Mongolia. Environmental Earth Sciences, 73(2), pp. 581–592. DOI: 10.1007/s12665-014-3173-1

59. IWRM-MoMo Consortium (2009). Integrated Water Resource Management for Central Asia: Model Region Mongolia. Case Study in the Kharaa River Basin. Final Project Report, 201 pp.

60. James T. (2011). Temperature sensitivity and recruitment of Siberian larch (Larix sibirica) and Siberian spruce (Picea obovata) in northern Mongolia’s boreal forest. Forest Ecology and Management, 262, pp. 629-636. DOI: 10.1016/j.foreco.2011.04.031

61. Jamyansuren S., Udval B., Batkhuu N., Bat-Erdene J. and Fischer M. (2018). Result of study on developing forest seed region in Mongolia. Proceedings of the Mongolian Academy of Sciences, [online], 58:01(225), pp. 5-14. Available at: (in Mongolian with abstract in English) [Accessed 18 Feb. 2019].

62. Jo H. and Park H. (2017a). Effects of pit plantings on tree growth in semi-arid environments. Forest Science and Technology 13(2), pp. 66-70. DOI: 10.1080/21580103.2017.1312559

63. Jo H. and Park H. (2017b). Effects of windbreak planting on crop productivity for agroforestry practices in a semi-arid region. Journal of Forest and Environment Science, 33(4), pp. 348-354. DOI: 10.7747/JFES.2017.33.4.348

64. Juřička D., Novotná J., Houška J., Parˇílková J., Hladký J., Pecina V., Cihlárˇová H, Burnog M., Elbl J., Rosická Z., Brtnický M. and Kynický J. (2018). Large-scale permafrost degradation as a primary factor in Larix sibirica forest dieback in the Khentii massif, northern Mongolia. Journal of Forestry Research, 29, pp. 1–12. DOI: 10.1007/s11676-018-0866-4

65. Kamp U. and Pan C.G. (2014). Inventory of glaciers in mongolia, derived from landsat imagery from 1989 to 2011. Geografiska Annaler: Series A, Physical Geography, 97(4), pp. 653-669. DOI: 10.1111/geoa.12105

66. Kansaritoreh E., Schuldt B. and Dulamsuren C. (2018). Hydraulic traits and tree-ring width in Larix sibirica Ledeb. as affected by summer drought and forest fragmentation in the Mongolian forest steppe. Annals of Forest Science, 75:30. DOI: 10.1007/s13595-018-0701-2

67. Karthe D., Abdullaev I., Boldgiv B., Borchardt D., Chalov S., Jarsjö J., Li L. and Nittrouer J. (2017a). Water in Central Asia: an integrated assessment for science-based management. Environmental Earth Sciences, 76, article 690. DOI:10.1007/s12665-017-6994-x

68. Karthe D., Chalov S., Moreydo V., Pashkina M., Romanchenko A., Batbayar G., Kalugin A., Westphal K., Malsy M. and Flörke M. (2017b). Assessment and Prediction of Runoff, Water and Sediment Quality in the Selenga River Basin aided by a Web-Based Geoservice. Water Resources, 44(3), pp.399-416. DOI:10.1134/S0097807817030113

69. Karthe D., Heldt S., Houdret A. and Borchardt D. (2015). IWRM in a country under rapid transition: lessons learnt from the Kharaa River Basin, Mongolia. Environmental Earth Sciences, 73(2), pp. 681-695. DOI:10.1007/s12665-014-3435-y

70. Karthe D., Kasimov N., Chalov S., Shinkareva G., Malsy M., Menzel L., Theuring P., Hartwig M., Schweitzer C., Hofmann J., Priess J. and Lychagin M. (2014). Integrating Multi-Scale Data for the Assessment of Water Availability and Quality in the Kharaa - Orkhon - Selenga River System. Geography, Environment, Sustainability, 3(7), pp. 65-86. DOI: 10.24057/2071-9388-2014-7-3-40-49

71. Kasimov N., Karthe D. and Chalov S. (2017). Environmental change in the Selenga River – Lake Baikal Basin. Regional Environmental Chang, 17(7), pp. 1945-1949. DOI:10.1007/s10113-017-1201-x

72. Keane R.E. (2018). Managing Wildfire for Whitebark Pine Ecosystem Restoration in western North America. Forests, 9(10), 648. Available at: [Accessed 18 Feb. 2019]. DOI: 10.3390/f9100648

73. Kharuk V.I. and Antamoshkina O.A. (2017). Impact of silkmoth outbreak on taiga wildfires. Contemporary Problems of Ecology, 10(5), pp. 556–562. DOI: 10.1134/S1995425517050055

74. Kharuk V.I., Im S.T., Oskorbin P.A., Petrov I.A. and Ranson K.J. (2013). Siberian pine decline and mortality in southern siberian mountains. Forest Ecology and Management, 310, pp. 312–320. DOI: 10.1016/j.foreco.2013.08.042

75. Khaulenbek A. and Kang H. (2017). Collaboration Project to Combat Desertifcation in Mongolia. PPP on the occasion of the International Conference on Environment and Technology, 27.10.2017, Ulaanbaatar, Mongolia.

76. Khishigjargal M., Dulamsuren Ch., Leuschner H.H., Leuschner C. and Hauck M. (2014). Climate effects on inter- and intra-annual larch stemwood anomalies in the Mongolian forest-steppe. Acta Oecologica Vol. 55, pp. 113-121. DOI: 10.1016/j.actao.2013.12.003

77. Khishigjargal M. (2013). Response of tree-ring width and regeneration in conifer forests of Mongolia to climate warming and land use. Ph.D. Thesis, Georg-August-Universität Göttingen, Germany; 131 pp.

78. Khongor T., Bat Ulzii Ch., Yeseul B., Sanaa E., Altangadas J., Khosbayar B., Mahmood A., VanRijn M. and Vickers B. (2018). Carbon emissions and removals from Mongolian boreal forests. In: P. Vossen D., Karthe B., Gunsmaa S., Enkhjargal S., eds, GMIT Symposium on Environmental Science and Engineering, Nalaikh, Mongolia, [online] pp. 28-29. Available at: [Accessed 10 Mar. 2019].

79. Kondrashov L., Teusan S., Chuluunbaatar T., Nyamjav B., Enkhtur D. and Goldammer J. (2008). Wildland fire disaster risk assessment for Mongolia. Ulaanbaatar: Gesellschaft für technische Zusammenarbeit (GTZ), Global Forest Monitoring Center, Pacific Forest Forum, 80 pp.

80. Kopp B., Lange J. and Menzel L. (2017). Effects of wildfire on runoff generating processes in northern Mongolia, Regional Environmental Change, 17(7), pp. 1951–1963. DOI:10.1007/s10113-016-0962-y

81. Krasnoshhekov Yu.N. (2001). Special features and protective role of the forests of Mongolia. Geography of Natural Resources. N. 1. P. 135-142 (In Russian with English abstract).

82. Krutovky K.V., Oreshkova N.V., Putintseva Yu.A., Ibe A.A., Deich K. and Shilkina E.A. (2014). Preliminary results of de novo whole genome sequencing of the Siberian Larch (Larix sibirica Ledeb.) and the Siberian Stone Pine (Pinus sibirica Du Tour). Siberian Journal of Forest Science, 1 (4), pp. 79–83. (in Russian with abstract in English).

83. Kusbach A., Štěrba T., Smola M., Novák J., Lukeš P. and Strejček R. (2017). Rozvoj lesu a krajiny v Mongolsku / Development of forests and landscape in Mongolia. Report for the seminar of the project of the Czech Forest Management Institute Brandýs nad Labem by deputy of the Czech Development Agency in collaboration with Mongolian Authorities, Domogt Sharyn Gol, September 2017, 113 p. (in Czech).

84. Lange J., Kopp B.J., Bents M. and Menzel L. (2015). Tracing variability of runoff generation in mountainous permafrost of semi-arid northeastern Mongolia. Hydrological Processes, 29(6), pp. 1046–1055. DOI:10.1002/hyp.10218

85. Lindenmayer D.B. and Noss RF. (2005). Salvage Logging, Ecosystem Processes, and Biodiversity Conservation. Conservation Biology, 20(4), pp. 949–958. DOI: 10.1111/j.1523-1739.2006.00497.x

86. Liang J., Crowther T.W., Picard N., Wiser S., Zhou M., Alberti G., Schulze E.D., McGuire A.D., Bozzato F., Pretzsch H., de-Miguel S. et al. (2016). Positive biodiversity-productivity relationship predominant in global forests. Science, 354: 6309, aaf8957. DOI: 10.1126/science.aaf8957

87. Locatelli B., Herawati H., Brockhaus M., Idinoba M., and Kanninen M. (2008). Methods and Tools for Assessing the Vulnerability of Forests and People to Climate Change – An Introduction. CIFOR Working Paper, [online], No. 43. 28 pp. Available at: [Accessed 14 Nov. 2018]

88. Lynam T., de Jong W., Sheil D., Kusumanto T. and Evans K. (2007). A review of tools for incorporating community knowledge, preferences and values into decision making into natural resources management. Ecology and Society, [online], Volume 12(1): 5. Available at: [Accessed 14 Nov 2018].

89. Maasri A. and Gelhaus J. (2011). The new era of the livestock production in Mongolia: Consequences on streams of the Great Lakes Depression. Science of the Total Environment, 409, pp. 4841–4846. DOI: 10.1016/j.scitotenv.2011.08.005

90. Malsy M., Flörke M. and Borchardt D. (2016). What drives the water quality changes in the Selenga Basin: climate change or socio-economic development? Regional Environmental Change, 17(7), pp. 1977–1989. DOI: 10.1007/s10113-016-1005-4

91. Malsy M., Heinen M., aus der Beek T. and Flörke M. (2013). Water resources and socioeconomic development in a water scarce region on the example of Mongolia. GeoÖko, 34(1–2), pp. 27–49.

92. Mannig B., Müller M., Starke E., Merkenschlager C., Mao W., Zhi X., Podzun R., Jacob D. and Paeth H. (2013). Dynamical downscaling of climate change in Central Asia. Global Planetary Change, 110(A), pp. 26–39. DOI:10.1016/j.gloplacha.2013.05.008

93. MET (2017a). Mongolia’s Third National Communication under the United Nations Framework Convention on Climate Change. Ulaanbaatar, Mongolia: Ministry of Environment and Tourism.

94. MET (2017b). Report on the state of the environment of Mongolia 2015-2016. Ulaanbaatar, Mongolia: Ministry of Environment and Tourism. 264 pp. (in Mongolian).

95. MET (2016). Multipurpose National Forest Inventory 2014-2016. Mongolian Ministry of Environment and Tourism. 1st ed. Ulaanbaatar: Ministry of Environment and Tourism.

96. MET (2014). Report on the state of the environment of Mongolia 2013-2014. Ulaanbaatar, Mongolia: Ministry of Environment and Tourism. 75 pp. (In Mongolian).

97. MET (2013). Report on the state of the environment of Mongolia 2011-2012. Ulaanbaatar, Mongolia: Ministry of Environment and Tourism. 80 pp. (In Mongolian).

98. Menzel L., Hofmann J. and Ibisch R. (2011). Untersuchung von Wasser- und Stoffflüssen als Grundlage für ein Integriertes Wasserressourcen – Management im Kharaa-Einzugsgebiet (Mongolei). Hydrologie und Wasserbewirtschaftung, 55(2), pp. 88-103. (In German).

99. Meyer P. and Schmidt M. (2011). Accumulation of dead wood in abandoned beech (Fagus sylvatica L.) forests in northwestern Germany. Forest Ecology and Management, 261(3), pp. 342-352. DOI: 10.1016/j.foreco.2010.08.037

100. Minderlein S. and Menzel L. (2015). Evapotranspiration and energy balance dynamics of a semi-arid mountainous steppe and shrubland site in Northern Mongolia. Environmental Earth Sciences, 73(2), pp. 593–609. DOI:10.1007/s12665-014-3335-1

101. MOLF (2015). Mongolian Law on Forests (in Mongolian). [online] Available at:[Accessed 14 Nov. 2018]

102. Mühlenberg M. (2012). Long-Term Research on Biodiversity in West Khentey, Northern Mongolia. Erforschung biologischer Ressourcen der Mongolei. Martin-Luther-Universität Halle, Wittenberg, Halle (Saale), [online] pp. 27-32. Available at: [Accessed 15 Jun 2017]. (In German).

103. Mühlenberg M., Appelfelder J., Hoffmann H., Ayush E. and Wilson K.J. (2012). Structure of the montane taiga forests of West Khentii, Northern Mongolia. Journal of Forest Science, 58(2), pp. 45-56.

104. Mühlenberg M., Batkhishig T., Dashzeveg Ts., Drößler L., Neusel B. and Tsogtbaatar J. (2006). Mongolia - Lessons from tree planting initiatives. Mongolia Discussion Papers, East Asia and Pacific Environment and Social Development Department, World Bank, Washington DC, [online], 38 pp., Available at: [Accessed 31 Mar 2019]

105. Mühlenberg M., Hondong H., Dulamsuren Ch. and Gadow K.v. (2004). Large-scale biodiversity research in the southern Taiga, Northern Mongolia. In: R.C. Szaro, C.E. Peterson, K.v. Gadow, N. Kraeuchi, ed., Creating a Legacy for Sustainable science-based Forest Management: lessons learned from field experiments. Forest Snow and Landscape Research. Swiss Federal Research Institute WSL, 78 (1–2), pp. 93–118.

106. Olivar J., Bogino S., Rathgeber C., Bonnesoeur V. and Bravo F. (2014). Thinning has a positive effect on growth dynamics and growth-climate relationships in Aleppo pine (Pinus halepensis L.) trees of different crown classes. Annals of Forest Science, 71, pp. 395-404. DOI: 10.1007/s13595-013-0348-y

107. Onderka M. and Melichercik I. (2010). Fire-prone areas delineated from a combination of the Nestorov Fire-Risk Rating Index with multispectral satellite data. Applied Geomatics, 2, pp. 1-7. DOI 10.1007/s12518-009-0014-0.

108. Otoda T., Sakamoto K., Hirobe M., Undarmaa J. and Yoshikawa K. (2013). Influences of anthropogenic disturbances on the dynamics of white birch (Betula platyphylla) forests at the southern boundary of the Mongolian forest-steppe. Journal of Forest Research., 18, pp. 82-92. DOI: 10.1007/s10310-011-0324-z

109. Oyunsanaa B. (2011). Fire and stand dynamics in different types of the West Khentey Mountains, Mongolia. Dissertation (Ph.D. Thesis), Georg-August-Universität Göttingen, Germany; p. 119

110. Oyuntuya Sh., Dorj B., Shurentsetseg B. and Bayarjargal E. (2015). Agrometeorological information for the adaptation to climate change, in: Badmaev, N.B., Khutakova, C.B. (Eds.): Soils of Steppe and Forest Steppe Ecosystems of Inner Asia and Problems of Their Sustainable Utilization: International Scientific Conference. Buryat State Academy of Agriculture named after V.R. Philipov, Ulan-Ude, pp. 135-140.

111. Park H., Fan P., John R. and Chen J. (2017). Urbanization on the Mongolian Plateau after economic reform: Changes and causes. Applied Geography Vol. 86, pp. 118-127. DOI: 10.1016/j.apgeog.2017.06.026

112. Park G.E., Lee D.K., Kim, K.W., Batkhuu N.-O., Tsogtbaatar J., Zhu J.-J., Jin, Y., Park P.S., Hyun, J.O. and Kim H.S. (2016). Morphological Characteristics and Water-Use Efficiency of Siberian Elm Trees (Ulmus pumila L.) within Arid Regions of Northeast Asia. Forests, 7 (11), 280. Available at: [Accessed 10 Jun. 2019] DOI: 10.3390/f7110280

113. Pausas JG. (2014). Bark thickness and fire regime. Functional Ecology, 29 (3), pp. 315-327. DOI: 10.1111/13652435.12372

114. Pellegrini A.F., Anderegg W.R.L., Paine C.E.T., Hoffmann W.A., Kartzinel T., Rabin S.S., Sheil D., Franco A.C. and Pacala S.W. (2017). Convergence of bark investment according to fire and climate structures ecosystem vulnerability to future change. Ecology Letters, 20 (3), pp. 307-316. DOI: 10.1111/ele.12725

115. Pickett S.T.A. and White P.S. (1985). The ecology of natural disturbance and patch dynamics. Academic Press, Orlando, FL, USA.: 472 pp.

116. Potapov P., Yaroshenko A., Turubanova S., Dubinin M., Laestadius L., Thies C., Aksenov D., Egorov A., Yesipova Y., Glushkov I., Karpachevskiy M., Kostikova A., Manisha A., Tsybikova E. and Zhuravleva I. (2008). Mapping the world’s intact forest landscapes by remote sensing. Ecology and Society, 13(2), p. 51. Available at: iss2/art51/ [Accessed 10 Mar. 2019].

117. Potapov P., Hansen M.C., Laestadius L., Turubanova S., Yaroshenko A., Thies C., Smith W., Zhuravleva I., Komarova A., Minnemeyer S. and Esipova E. (2017). The last frontiers of wilderness: Tracking loss of intact forest landscapes from 2000 to 2013. Science Advances, 3(1): e1600821. DOI: 10.1126/sciadv.1600821

118. Priess J., Schweitzer C., Wimmer F., Batkhishig O. and Mimler M. (2011). The consequences of land-use change and water demands in Central Mongolia. Land Use Policy, 28(1), pp. 4-10. DOI:10.1016/j.landusepol.2010.03.002

119. Puettmann K.J. and Ammer C. (2007). Trends in North American and European regeneration research under the ecosystem management paradigm. European Journal of Forest Research, 126, pp. 1-9. DOI: 10.1007/s10342-005-0089-z

120. Putintseva Yu.A., Oreshkova N.V., Bondar E.I., Sharov V.V., Kuzmin D.A., Makalov S.V. and Krutovky K.V. (2018). Genomics for practical forestry: development of genome-wide markers for timber origin identification and other applications. In: B. Degen, K.V. Krutovsky, M. Liesebach (eds). German-Russian Conference on Forest Genetics - Proceedings – Ahrensburg, 2017 Nov. 21-23. Thünen Report 62: 101-106.

121. Rao M.P., Davi N.K., D'Arrigo R.D., Skees J., Baatarbileg N., Leland C., Lyon B., Wang S.Y. and Oyunsanaa B. (2015). Dzuds, droughts, and livestock mortality in Mongolia. Environmental Research Letters, 10(7), 074012. DOI: 10.1088/1748-9326/10/7/074012

122. Rosell J.A., Olson M.E., Anfodillo T. and Martinez-Mendez N. (2017). Exploring the bark thickness-stem diameter relationship: clues from lianas, successive cambia, monocots and gymnosperms. New Phytologist, 215(2), pp. 569-581. DOI: /10.1111/nph.14628

123. Sagwal S.S. (1991). Dictionary of Forest Fires. Ashish Publishing House, New Delhi, 64 pp.

124. Saladyga T., Hessl A., Baatarbileg N. and Pederson N. (2013). Privatization, Drought, and Fire Exclusion in the Tuul River Watershed, Mongolia. Ecosystems, 16, pp. 1139-1151. DOI: 10.1007/s10021-013-9673-0

125. Sato T., Kimura F. and Kitoh A. (2007). Projection of global warming onto regional precipitation over Mongolia using a regional climate model. Journal of Hydrology, 333, pp.144-154.

126. Savin E.N., Miljutin L.I., Krasnoshhekov Ju.N., Korotkov I.A., Suncov A.V., Dugarzhav Ch., Cogoo Z., Dorzhsuren Ch., Zhamjansurjen S and Gombosuren N. (1988). Forests of the Mongolian People's Republic (Larch forests of eastern Khentii). Nauka, Moscow, 176 pp. (in Russian).

127. Savin E.N., Korotkov I.A., Krasnoshhekov Yu.N., Ogorodnikov A.V., Janovskij V.M., Dugarzhav Ch., Dorzhsuren Ch. and Dashzeveg C. (1983). Forests of the Mongolian People's Republic (Larch forests of Central Khangai). Nauka, Siberian branch, Novosibirsk, 150 pp. (in Russian).

128. Schmidt-Corsitto K. (2014). Case Study on Climate Change Adaptation measures in the North Mongolian forest conducted by the GIZ “Biodiversity and adaptation of key forest ecosystem to climate change” program. In: Natsagdorj L. (2014) Climate change adaptation strategy and measures. Published in: Mongolia second assessment report on Climate Change – MARCC 2014. Ulaanbaatar, pp.193-197.

129. Semerikov V.I., Semerikova S.A., Poleshaeva M.A., Kosintesev P.A. and Lascoux M. (2013). Southern mountane populations did not contribute to the recolonization of the West Siberian Plain by Siberian larch (Larix siberia): a range-wide analysis of cytoplasmic markers. Molecular Ecology, 22, pp. 4958-4971. DOI: 10.1111/mec.12433

130. Sepp S. and Schüler B. (2016). Value chain analyses for the NTFPs: Pine Nuts, Charcoal, Fuelwood. ECO Consult Sepp und Busacker, 42 pp.

131. Sharkhuu A., Sharkhuu N., Etzelmüller B., Heggem E.S.F., Nelson F.E., Shiklomanov N.I., Goulden C.E. and Brown J. (2007). Permafrost monitoring in the Hovsgol mountain region, Mongolia. Journal of Geophysical Research, 102(F12), manuscript F02S06. DOI: 10.1029/2006JF000543

132. Slemnev, N.N., Sheremetiev, S.N., Gamalei Ju.V., Stepanova, A.V., Chebotareva K.E., Tsogt Z., Tsoozh, Sh. and Yarmishko V.T. (2012). Radial increment variability in Mongolian trees and shrubs under climate dynamics. Journal of Botany, 97(7), pp. 852-871. (in Russian).

133. Spellerberg I.F. (1992). Evaluation and assessment for conservation: Ecological guidelines for determining priorities for nature conservation. London / Glasgow / New York / Tokyo / Melbourne / Madras, Chapman and Hall, 260 pp.

134. Syromyatina M.V., Kurochkin Y.N., Bliakharskii D.P. and Chistyakov K.V. (2015). Current dynamics of glaciers in the Tavan Bogd Mountains (Northwest Mongolia). Environmental Earth Sciences, 74(3), pp. 1905-1914. DOI: 10.1007/s12665-015-4606-1

135. Tanskanen H., Venalainen A., (2008). The relationship between fire activity and fire weather indices at different stages of the growing season in Finland. Boreal Environment Research, Vol. 13, pp. 285-302.

136. Taube M. (2005). Die Geheime Geschichte der Mongolen. Herkunft, Leben und Aufstieg Dschingis Khans. Aus dem mongolischen übersetzt und kommentiert. Beck, München, 325 pp. (in German).

137. Tchebakova N.M., Parfenova E.I. and Soja A.J. (2011). Climate change and climate-induced hot spots in forest shifts in central Siberia from observed data. Regional Environmental Change, 11(4), pp. 817-827. DOI: 10.1007/s10113-011-0210-4

138. Teusan S. (2018). Analyse der Waldentwicklung in der nördlichen Mongolei seit dem politischen Umbruch im Jahre 1991 unter besonderer Berücksichtigung feuerökologischer Aspekte. Ph.D. Thesis, FU Berlin, Germany, 171 pp. (in German).

139. Theuring P., Collins A.L. and Rode M. (2015). Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia. Science of the Total Environment, 526, pp. 77-87. DOI:10.1016/j.scitotenv.2015.03.134

140. Tikhonova I.V., Korets M.A. and Mukhortova L. (2014). Potential Soil and Climatic Ranges of Pine and Larch in Central Siberia. Contemporary Problems of Ecology, 7(7), pp. 752-758. DOI:10.1134/S1995425514070130

141. Törnqvist R., Jarsjö J., Pietroń J., Bring A., Rogberg P., Asokan S.M. and Destouni G. (2014). Evolution of the hydro-climate system in the Lake Baikal basin. Journal of Hydrology, 519, pp. 1953–1962. DOI:10.1016/j.jhydrol.2014.09.074

142. Tsogt Z., Danilin I.M., Tsogtbaatar Zh. and Khongor Ts. (2018). Formation of coniferous forests. Forest inventory structure and productivity. Chapter VI In: Forests of Mongolia. Vol. 5. Forests of the Eastern Khubsugul, Biological Diversity, Ecosystems, Dynamics, Restoration. Ulaanbaatar, Mongolia. pp. 158-171. (In Mongolian with Russian summary and contents).

143. Tsogtbaatar J. (2004). Deforestation and reforestation needs in Mongolia. Forest Ecology and Management, 201(1), pp. 57–63. DOI: 10.1016/j.foreco.2004.06.011

144. Tsogtbaatar J. (2008). Forest Policy Development in Mongolia. IUFRO Task Force Science/ Policy Interface. [online], Available at: [Accessed 22 Jun. 2019].

145. Tuvshintogtokh I. and Ariungerel D. (2012). Degradation of Mongolian Grassland Vegetation Under Overgrazing by Livestock and Its Recovery by Protection from Livestock Grazing. In: N. Yamamura, Fujita, N., A. Maekawa, ed., The Mongolian Ecosystem Network. Environmental Issues Under Climate and Social Changes. Tokyo: Springer Japan. DOI: 10.1007/978-4-431-54052-6_10

146. UNFCCC (2019). REDD + web platform of the UFCCC for reducing emissions form deforestation and forest degradation in developing countries. [online] Available at: [Accessed 6 Jun. 2019].

147. Unger-Sayesteh K., Vorogushyn S., Farinotti D., Gafurov A., Duethmann D., Mandychev A. and Merz B. (2013). What do we know about past changes in the water cycle of Central Asian headwaters? A review. Global Planetary Change, 110(A), pp. 4–25. DOI:10.1016/j.gloplacha.2013.02.004

148. UNREDD (2013) Forest Sector financing flows and economic values in Mongolia. UN REDD Programme, [online], 60 pp. Available at: Valuation%20Report%20Final.pdf [Accessed 10 Jun. 2019].

149. UNREDD (2017) Preliminary Assessment of the Drivers of Forest Change in Mongolia: A Discussion Paper for Supporting Development of Mongolia’s National REDD+ Strategy. UN-REDD Mongolia National Programme, Ministry of Environment and Tourism, Ulaanba atar, Mongolia. 127 pp.

150. Vandandorj S., Munkhjargak E., Boldgiv B. and Gantsetseg B. (2017). Changes in event number and duration of rain types over Mongolia from 1981 to 2014. Environmental Earth Sciences, 76(2), manuscript 70. DOI:10.1007/s12665-016-6380-0

151. Verhoeven D., de Boer W.F., Henkens R.J.H.G. and Sass-Klaassen U.G.W. (2018). Water availability as driver of birch mortality in Hustai National Park, Mongolia. Dendrochronologia, 49, pp.127-133. DOI: 10.1016/j.dendro.2018.04.001

152. Viviroli D. and Weingartner R. (2004). The hydrological significance of mountains: from regional to global scale. Hydrology and Earth Systems Science, 8(6), pp. 1016–1029. DOI:10.5194/hess-8-1017-2004

153. Wimmer F, Schlaffer S, aus der Beek T and Menzel L (2009). Distributed modelling of climate change impacts on snow sublimation in northern Mongolia. Advances in Geosciences 21:117-124. DOI:10.5194/adgeo-21-117-2009

154. Ykhanbai H. (2010). Mongolian forestry outlook study. Asia-Pacific forestry sector outlook study II. Working paper series. No. APFSOS II/ WP/ 2009/ 21 FAO. Bangkok, Kingdom of Thailand, 49 pp.

155. Zhukov A.B., Savin E.N., Korotkov I.A. and Ogorodnikov A.B. (1978). Forests of the Mongolian People’s Republic: Geography and Typology. Biological resources and environmental conditions of the Mongolian People's Republic, Vol. 11, p. 127. (in Russian).

For citation:

Gradel A., Sukhbaatar G., Karthe D., Kang H. Forest Management In Mongolia – A Review Of Challenges And Lessons Learned With Special Reference To Degradation And Deforestation. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2019;12(3):133-166.

Views: 296

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)