Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

FIELD AND NUMERICAL STUDY OF THE WIND-WAVE REGIME ON THE GORKY RESERVOIR

https://doi.org/10.15356/2071-9388_02v09_2016_02

Full Text:

Abstract

The paper describes the study of wind-wave regime at the Gorky reservoir. A series of field experiments (carried out from May to October in 2012–2015) showed that the values of the drag coefficient CD for a middle-sized reservoir in the range of moderate and strong winds are approximately 50 % lower than its values typical of the ocean conditions. The obtained parameterization of CD was implemented in the wave model WAVEWATCH III to receive the correct wave forecasts for a middle-sized reservoir. Statistical distribution of the wind speeds and directions called for consideration of wind field heterogeneity over the Gorky reservoir. It was incorporated using the wind forcing from atmospheric model WRF to WAVEWATCH III. Homogeneous wind forcing from the experimental data was compared with heterogeneous wind forcing from WRF. The need for further improvement of the quality of wind and wave prediction is discussed.

About the Authors

Alexandra M. Kuznetsova
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod State University
Russian Federation


Georgy A. Baydakov
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod State University
Russian Federation


Vladislav V. Papko
Institute of Applied Physics of the Russian Academy of Sciences
Russian Federation


Alexander A. Kandaurov
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod State University
Russian Federation


Maxim I. Vdovin
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod State University
Russian Federation


Daniil A. Sergeev
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod State University
Russian Federation


Yuliya I. Troitskaya
Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod State University
Russian Federation


References

1. Alves J.-H.G.M., Chawla A., Tolman H.L., Schwab D., Lang G., Mann G. (2011).The Great Lakes Wave Model at NOAA/NCEP: Challenges and Future Developments. //12th International Workshop on Wave Hindcasting and Forecasting, Hawaii.

2. Alves J.-H.G.M., Chawla A., Tolman H.L., Schwab D., Lang G., Mann G. (2014). The Operational Implementation of a Great Lakes Wave Forecasting System at NOAA/NCEP. // Wea. Forecasting, 29, 1473–1497.

3. Atakturk S.S., Katsaros K.B. (1999) Wind Stress and Surface Waves Observed on Lake Washington // Journal of Physical Oceanography, 29, pp. 633–650.

4. Babanin A.V., Makin V.K. (2008) Effects of wind trend and gustiness on the sea drag: Lake George study // Journal of Geophysical Research, V.113, C02015, doi:10.1029/2007JC004233.

5. Bakhanov V.V., Bogatov N.A., Ermoshkin A.V., Ivanov A.Y., Lobanov V.N., Kemarskaja O.N., Titov V.I. (2011) Full-scale investigations of the action of internal waves and inhomogeneous currents on the wind waves in the White Sea // Proc. SPIE 8175, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2011, 81750L, doi:10.1117/12.898364.

6. Bogatov N.A., Bakhanov V.V., Ermoshkin A.V., Kazakov V.I., Kemarskaya O.N., Titov V.I., Troitskaya Yu.I. (2014) Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters // Proc. SPIE 9240, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2014, 924013; doi:10.1117/12.2067403.

7. Computational and Information Systems Laboratory. (2012) Yellowstone: IBM iDataPlex System (University Community Computing). Boulder, CO: National Center for Atmospheric Research. http://n2t.net/ark:/85065/d7wd3xhc.

8. Donelan M.A., Drennan W.M., Magnusson A.K. (1996) Nonstationary analysis of the directional properties of propagating waves. // J. Phys. Oceanogr., V.26, N.9., P.1901–1914.

9. Fairall C.W., Bradley E.F., Hare J.E. et al. (2003) Bulk Parameterization of Air–Sea. Fluxes: Updates and Verification for the COARE Algorithm // Journal of Climate, V.16, P.571–591.

10. Gunter H., Hasselmann S., Janssen P.A.E.M. (1992) The WAM model cycle 4. Technical report No. 4. //DKRZ WAM Model Documentation. Hamburg. 101 pp.

11. Hasselmann S. and Hasselmann K. (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, Part I: A new method for efficient computations of the exact nonlinear transfer integral // J. Phys. Oceanogr., vol. 15, pp. 1369–1377.

12. Hasselmann S., Hasselmann K., Allender J.H., Barnett T.P. (1985) Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum, Part II: parameterizations of nonlinear energy transfer for application in wave models // J. Phys. Oceanogr., vol. 15, pp. 1378–1391.

13. Hesser T.J., Cialone M.A., Anderson M.E. (2013) Lake St. Clair: Storm Wave and Water Level Modeling. // The US Army Research and Development Center (ERDC), 156 pp.

14. Ivanov A.V., Troitskaya Yu.I., Papko V.V., Sergeev D.A., Baydakov G.A., Vdovin M.I., Kazakov V.I., Kandaurov A.A., Afanasieva I.M., Donskova O.A., Shuvalova N.M. (2015) Stratifikaciya kak factor vliyaniya na kachestvo vody na poverkhnosti vodoema (Stratification as a factor of influence on water quality of a plane reservoir) // Privolzhsky Nauchnyy Journal, № 34, с.149–156 (In Russian)

15. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu. I. (2016) Adjusting of wind input source term in WAVEWATCH III model for the middle-sized water body on the basis of the field experiment. // Advances in Meteorology, vol. 2016, Article ID 8539127, 13 pages. doi:10.1155/2016/8539127.

16. Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Yu. I. (2016) Naturnye issledovaniya i chislennoye modelirovaniye vetra i poverkhnostnykh voln na vnutrennikh vodoyemakh srednikh razmerov (Field experiment and simulation of wind and surface waves on the middle-size reservoir). // Meteorologiya i Gidrologiya,vol. 41, issue 2, pp. 136 – 145 (In Russian).

17. Lopatoukhin L.J., Boukhanovsky A.V., Chernyshova E.S., Ivanov S.V. (2004) Hindcasting of wind and wave climate of seas around Russia // Proc. The 8th International Workshop on Waves Hindcasting and Forecasting, Hawaii.

18. Poddubnyi S.A., Sukhova E.V. (2002) Modelirovaniye vliyaniya gidrodinamicheskikh i antropogennykh faktorov na raspredeleniye gidrobiontov v vodokhranilishchakh: Rukovodstvo dlya polzovatelej. (Modeling the effect of hydrodynamical and anthropogenic factors on distribution of hydrobionts in reservoirs: User’s Manual). //Institut Biologii Vn. Vod. im. I.D.Papanina, 116 pp. (In Russian).

19. SutyrinaE.N. (2011) Opredeleniye kharakteristik volnovogo rezhima Bratskogo vodokhranilishcha (The estimation of characteristics of the Bratskoye Reservoir wave regime). // Izv. Irkutsk State Univ., vol.4, 216-226. (In Russian).

20. SWAN team. SWAN – user manual. (2006) //Delft University of Technology, Environmental Fluid Mechanics Section. 129 pp.

21. Tolman H. and WAVEWATCH III Development Group. User manual and system documentation of WAVEWATCH III version 4.18. (2014) //Environmental Modeling Center, Marine Modeling and Analysis Branch. 282 pp. + Appendices.

22. Troitskaya Yu. I., Sergeev D.A., Kandaurov A.A., Baidakov G.A., Vdovin M.A., Kazakov V.I. (2012) Laboratory and theoretical modeling of air-sea momentum transfer under severe wind conditions // J. Geophys. Res., V.117, Is. C11, C00J21.

23. Wu J. (1982) Wind-stress coefficients over sea surface from breeze to hurricane // J. Geophys. Res., vol. 87, pp. 9704–9706.

24. Zilitinkevich S., Kulmala M., Esau I., Baklanov A. (2015) Megacities – refining models to personal environment. // WMO Bulletin 64 (1), 20–22.

25. Zilitinkevich S.S., Elperin T., Kleeorin N., Rogachevskii I., Esau I.N. (2013) A hierarchy of energy-and flux-budget (EFB) turbulence closure models for stably stratified geophysical flows. // Boundary-Layer Meteorol. 146, 341–373.

26. Zilitinkevich S.S., Hunt J.C.R., Grachev A.A., Esau I.N., Lalas D.P., Akylas E., Tombrou M., Fairall C.W., Fernando H.J.S., Baklanov A., Joffre S.M. (2006) The influence of large convective eddies on the surface layer turbulence. // Quart. J. Roy. Met. Soc. 132, 1423–1456.


For citation:


Kuznetsova A.M., Baydakov G.A., Papko V.V., Kandaurov A.A., Vdovin M.I., Sergeev D.A., Troitskaya Y.I. FIELD AND NUMERICAL STUDY OF THE WIND-WAVE REGIME ON THE GORKY RESERVOIR. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2016;9(2):19-37. https://doi.org/10.15356/2071-9388_02v09_2016_02

Views: 272


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)