Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Four Decades of Tree Cover and Grassland Dynamics in the Foothills of the Western Himalayas – Chamoli District of Uttarakhand, India

https://doi.org/10.24057/2071-9388-2025-3904

Abstract

The study investigates the dynamics of land use and land cover changes and their impacts on tree cover and grasslands in the Chamoli district of Uttarakhand over four decades (1983-2023). Using multi-temporal satellite data analysis, the research examines vegetation patterns across different elevation zones ranging from 683m to 7801m. The findings reveal significant variations in tree cover, with an initial increase from 224,027 hectares in 1983 to fluctuations leading to 323,554 hectares by 2023. Tree cover showed remarkable expansion at higher elevations, particularly in the 4149-5152m zone, increasing from 147 hectares to 44,189 hectares. This indicates significant upward migration. Grassland areas demonstrated considerable variability, expanding from 93,647 hectares in 1983 to 118,330 hectares in 2023. The study identifies a clear spatial pattern with consistently higher vegetation density in the southern region, while the northern portion exhibits notably lower coverage. This north-south vegetation gradient persists throughout the temporal sequence, suggesting underlying environmental and human influences. The research also highlights concerning trends in other land cover types, including an increase in barren land and a massive decrease in snow cover, indicating significant changes. These transformations have important implications for local ecosystems, biodiversity, and communities dependent on these landscapes. The findings contribute to understanding the complex interactions between climate change, land management practices, and vegetation dynamics in high-altitude regions, providing valuable insights for conservation strategies and sustainable resource management.

About the Authors

Roosen Kumar
Department of Geography, Delhi School of Economics, University of Delhi
India


Bindhy Wasini Pandey
Department of Geography, Delhi School of Economics, University of Delhi
India


Jitender Rathore
School of Plant and Environmental Sciences, Virginia Tech
United States


Chetna Sharma
CSRD, School of Social Sciences, Jawaharlal Nehru University
India

New Delhi



References

1. Anderson, K., Fawcett, D., Cugulliere, A., Benford, S., Jones, D., & Leng, R. (2020). Vegetation expansion in the subnival Hindu Kush Himalaya. Global Change Biology, 26(3), 1608-1625. https://doi.org/10.1111/gcb.14919

2. Anees, M. M., Sharma, R., & Joshi, P. K. (2021). Urbanization in Himalaya—An interregional perspective to land use and urban growth dynamics. In Mountain landscapes in transition: effects of land use and climate change (pp. 517-538). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-70238-0_23

3. Bagchi, S., Mishra, C., & Bhatnagar, Y. V. (2004, May). Conflicts between traditional pastoralism and conservation of Himalayan ibex (Capra sibirica) in the Trans-Himalayan mountains. In Animal Conservation Forum (Vol. 7, No. 2, pp. 121-128). Cambridge University Press. https:// doi.org/10.1017/S1367943003001148

4. Bhusal, P., & Awasthi, K. R. (2024). Challenges to Transhumant Pastoralism Due to Socioeconomic and Ecological Changes in Nepal’s High

5. Mountains. In Lifestyle and Livelihood Changes Among Formerly Nomadic Peoples: Entrepreneurship, Diversity and Urbanisation (pp. 167183). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-51142-4_7

6. Bolch, T., Shea, J. M., Liu, S., Azam, F. M., Gao, Y., Gruber, S., ... & Yao, T. (2019). Status and change of the cryosphere in the Extended Hindu Kush Himalaya Region. In The Hindu Kush Himalaya Assessment (pp. 209-255). Springer. https://doi.org/10.1007/978-3-319-92288-1_7

7. Dame, J., Schmidt, S., Müller, J., & Nüsser, M. (2019). Urbanisation and socio-ecological challenges in high mountain towns: Insights from Leh (Ladakh), India. Landscape and urban planning, 189, 189-199. https://doi.org/10.1016/j.landurbplan.2019.04.017

8. Duffy, P. B., Brando, P., Asner, G. P., & Field, C. B. (2015). Projections of future meteorological drought and wet periods in the Amazon. Proceedings of the National Academy of Sciences, 112(43), 13172-13177. https://doi.org/10.1073/pnas.1421010112

9. Flantua, S. G. A., van Boxel, J. H., Hooghiemstra, H., & van Smaalen, J. (2007). Application of GIS and logistic regression to fossil pollen data in modelling present and past spatial distribution of the Colombian savanna. Climate Dynamics, 29, 697–712. https://doi.org/10.1007/ s00382-007-0276-3

10. FSI. (2019). India state of forest report 2019. Forest Survey of India. https://fsi.nic.in/forest-report-2019

11. Rawal, R., Dasila, K., Kishor, K., & Tewari, L. M. (2025). Pattern of forest structure and species regeneration along with elevation gradients and aspects in evergreen oak forest belt of the Western himalaya. Discover Plants, 2(1), 1-20. https://doi.org/10.1007/s44372-025-00381-3

12. Galvin, K. A., Reid, R. S., Behnke Jr, R. H., & Hobbs, N. T. (2008). Fragmentation in semi-arid and arid landscapes. Consequences for Human and Natural Systems. https://hdl.handle.net/10568/1305

13. Grace, J., Berninger, F., & Nagy, L. (2002). Impacts of climate change on the tree line. Annals of Botany, 90(4), 537-544. https://doi.org/10.1093/aob/mcf222

14. Hansen, M. C., Stehman, S. V., Potapov, P. V., Loveland, T. R., Townshend, J. R., De Fries, R. S., & Di Miceli, C. (2008). Humid tropical forest clearing from 2003 to 2005 quantified by using multitemporal and multiresolution remotely sensed data. Proceedings of the National Academy of Sciences, 105(27), 9439-9444. https://doi.org/10.1073/pnas.0804042105

15. Harsch, M. A., Hulme, P. E., McGlone, M. S., & Duncan, R. P. (2009). Are treelines advancing? A global meta‐analysis of treeline response to climate warming. Ecology Letters, 12(10), 1040-1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

16. Harsch, M. A., & Bader, M. Y. (2011). Treeline form: A potential key to understanding treeline dynamics. Global Ecology and Biogeography, 20(4), 582-596. https://doi.org/10.1111/j.1466-8238.2010.00622.x

17. Holtmeier, F. K., & Broll, G. (2005). Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecology and Biogeography, 14(5), 395-410. https://doi.org/10.1111/j.1466-822X.2005.00168.x

18. Holtmeier, F. K., & Broll, G. E. (2007). Treeline advance-driving processes and adverse factors. Landscape Online, 1, 1-33. https://doi.org/10.3097/LO.200701

19. Holtmeier, F. K., & Broll, G. (2012). Landform influences on treeline patchiness and dynamics in a changing climate. Physical Geography, 33(5), 403-437. https://doi.org/10.2747/0272-3646.33.5.403

20. Immerzeel, W. W., Lutz, A. F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., ... & Baillie, J. E. M. (2020). Importance and vulnerability of the world’s water towers. Nature, 577(7790), 364-369. https://doi.org/10.1038/s41586-019-1822-y

21. Jobbágy, E. G., & Jackson, R. B. (2003). Global controls of forest line elevation in the northern and southern hemispheres. Global Ecology and Biogeography, 9(3), 253-268. https://doi.org/10.1046/j.1365-2699.2000.00162.x

22. Joshi, G., & Negi, G. C. (2011). Quantification and valuation of forest ecosystem services in the western Himalayan region of India. International Journal of Biodiversity Science, Ecosystem Services & Management, 7(1), 2-11. https://doi.org/10.1080/21513732.2011.598134

23. Kassahun, A., Snyman, H. A., & Smit, G. N. (2008). Impact of rangeland degradation on the pastoral production systems, livelihoods and perceptions of the Somali pastoralists in Eastern Ethiopia. Journal of Arid Environments, 72(7), 1265-1281. https://doi.org/10.1016/j.jaridenv.2008.01.002

24. Kullman, L. (2001). 20th century climate warming and tree-limit rise in the southern Scandes of Sweden. Ambio: A Journal of the Human Environment, 30(2), 72-80. https://doi.org/10.1579/0044-7447-30.2.72

25. Kumar, R., Krishnia, P., Kumari, V., & Sharma, C. (2025). Perception on Livestock Changes and Its Socio-Economic Implications Among Agro-pastoralists: A Case Study of Agro-pastoralists in Joshimath Block in Chamoli. Revista Geográfica de Chile Terra Australis, 61(1). https://doi.org/10.23854/07199562.2025611.kumar2

26. Kumar, S., & Khanduri, V. P. (2024). Impact of climate change on the Himalayan alpine treeline vegetation. Heliyon, 10(23). https://doi.org/10.1016/j.heliyon.2024.e40797

27. Lefroy, R. D., Bechstedt, H. D., & Rais, M. (2000). Indicators for sustainable land management based on farmer surveys in Vietnam, Indonesia, and Thailand. Agriculture, ecosystems & environment, 81(2), 137-146. https://doi.org/10.1016/S0167-8809(00)00187-0

28. Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. Science, 320(5884), 1768-1771. https://doi.org/10.1126/science.1156831

29. Liu, H. Y., Tang, Z. Y., Dai, J. H., Tang, Y. X., & Cui, H. T. (2002). Larch timberline and its development in north China. Mountain Research and Development, 22, 359–367. https://doi.org/10.1659/0276-4741(2002)022[0359:LTAIDI]2.0.CO;2

30. Mishra, C. (2001). High altitude survival: Conflicts between pastoralism and wildlife in the Trans-Himalaya. Wageningen University and Research. https://www.proquest.com/openview/bcc9af586e5c20df06673f312fbd04ff/1?pq-origsite=gscholar&cbl=18750&diss=y

31. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature, 421(6918), 37-42. https://doi.org/10.1038/nature01286

32. Payette, S. (2007). Contrasted dynamics of northern Labrador tree lines caused by climate change and migrational lag. Ecology, 88(3), 770-780. https://doi.org/10.1890/06-0265

33. Pepin, N., Bradley, R. S., Diaz, H. F., Baraër, M., Caceres, E. B., Forsythe, N., ... & Mountain Research Initiative EDW Working Group. (2015). Elevation-dependent warming in mountain regions of the world. Nature climate change, 5(5), 424-430. https://doi.org/10.1038/nclimate2563

34. Purekhovsky, A. G., Gunya, A. N., Kolbowsky, E. Y., & Aleinikov, A. A. (2025). Methods Of Studying The Alpine Treeline: A Systematic Review. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY, 18(1), 105-116. https://doi.org/10.24057/2071-9388-2025-3735

35. Quétier, F., Lavorel, S., Thuiller, W., & Davies, I. (2007). Plant‐trait‐based modeling assessment of ecosystem‐service sensitivity to land‐use change. Ecological Applications, 17(8), 2377-2386. https://doi.org/10.1890/06-0750.1

36. Rai, I. D., Singh, G., Pandey, A., & Rawat, G. S. (2019). Ecology of treeline vegetation in western Himalaya: anthropogenic and climatic influences. Tropical ecosystems: Structure, functions and challenges in the face of global change, 173-192. https://doi.org/10.1007/978-98113-8249-9_9

37. Rana, S. K., Rawal, R. S., Bentz, B. J., Linde, E., & Price, M. (2019). Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLOS One, 14(2), e0212200. https://doi.org/10.1371/journal.pone.0057103

38. Rawat, D., & Schickhoff, U. (2022). Changing climate scenario in high altitude regions: comparison of observed trends and perceptions of agro-pastoralists in Darma Valley, Uttarakhand, India. Mountain Landscapes in Transition: Effects of Land Use and Climate Change, 429-447. https://doi.org/10.1007/978-3-030-70238-0_18

39. Sah, P., Sharma, S., Latwal, A., & Shaik, R. (2023). Timberline and climate in the Indian Western Himalayan region: changes and impact on timberline elevations. In Climate Change and Urban Environment Sustainability (pp. 205-225). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-19-7618-6_12

40. Saxena, K. G., Rao, K. S., Sen, K. K., Maikhuri, R. K., & Semwal, R. L. (2002). Integrated natural resource management: approaches and lessons from the Himalaya. Conservation Ecology, 5(2). https://www.jstor.org/stable/26271822

41. Schickhoff, U. (2005). The upper timberline in the Himalayas, Hindu Kush and Karakorum: a review of geographical and ecological aspects. Mountain ecosystems, 275-354. https://doi.org/10.1007/3-540-27365-4_12

42. Schickhoff, U., Bobrowski, M., Böhner, J., Bürzle, B., Chaudhary, R. P., Gerlitz, L., ... & Wedegärtner, R. (2015). Do Himalayan treelines respond to recent climate change? An evaluation of sensitivity indicators. Earth System Dynamics, 6(1), 245-265. https://doi.org/10.5194/esd-6-2452015

43. Singh, C. P., Panigrahy, S., Thapliyal, A., Kimothi, M. M., Soni, P., & Parihar, J. S. (2012). Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Current Science, 102(4), 559-562. https://www.jstor.org/stable/24084105

44. Singh, S. P., & Singh, J. S. (1987). Forest vegetation of the Himalaya. The Botanical Review, 53(1), 80-192. https://doi.org/10.1007/BF02858183

45. Suwal, M. K., Shrestha, K. B., Guragain, L., Shakya, R., Shrestha, K., Bhuju, D. R., & Vetaas, O. R. (2016). Land-use change under a warming climate facilitated upslope expansion of Himalayan silver fir (Abies spectabilis (D. Don) Spach). Plant Ecology, 217(8), 993-1002. https://doi.org/10.1007/s11258-016-0624-7

46. Tasser, E., & Tappeiner, U. (2002). Impact of land use changes on mountain vegetation. Applied Vegetation Science, 5(2), 173-184. https://doi.org/10.1111/j.1654-109X.2002.tb00547.x

47. Tewari, V. P., Verma, R. K., & Von Gadow, K. (2017). Climate change effects in the Western Himalayan ecosystems of India: evidence and strategies. Forest Ecosystems, 4(1), 1-9. https://doi.org/10.1186/s40663-017-0100-4

48. Walia, K., Kumari, Y., Garima, & Mehta, A. (2025). Ecosystem Recovery and Resilience After Forest Fires. In Forest Fire and Climate Change: Insights into Science (pp. 119-145). Cham: Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-89967-6_7


Review

For citations:


Kumar R., Pandey B., Rathore J., Sharma Ch. Four Decades of Tree Cover and Grassland Dynamics in the Foothills of the Western Himalayas – Chamoli District of Uttarakhand, India. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(4):19-35. https://doi.org/10.24057/2071-9388-2025-3904

Views: 48

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)