Modern evolution and hydrological regime of the Bashkara Glacier Lakes system (Central Caucasus, Russia) after the outburst on September 1, 2017
https://doi.org/10.24057/2071-9388-2024-3717
Abstract
In high mountain areas, glacial lake outbursts are often the cause of floods and extreme events. Investigation of these events is especially important in the context of ongoing intensive deglaciation and climate change. This study is focused on the monitoring of the Bashkara Glacier Lakes after their outburst on September 1st, 2017, which are located in the most glaciated and populated part of the Central Caucasus of Russia, in the Mt. Elbrus region. Following the incident, the lakes system has transformed into flow-through. However, the lakes system has undergone significant changes and remains unstable and potentially hazardous. In this research, we used remote sensing data and field observations to assess the condition of the Bashkara Lakes. The water level, area and volume of the lakes are unstable. Between 2018 and 2024, the area of Bashkara Lake increased by 32% and volume by 41%, with the level increasing by 3.2 meters. At the same time, Lapa Lake was rapidly shrinking. The area of Lapa Lake in 2018-2024 decreased by 51%, the volume by 66%, and the level decreased by 4.2 meters. In addition to the continuing rise of the water level, the possibility of future rockfalls cannot be excluded, which can trigger a re-outburst. Ephemeral glacier lakes were also discovered, their merging with the main lake can cause a dramatic increase in the lake volume. On the other hand, other factors, such as the decrease in water temperature of Bashkara lake and its flowage, indicate the stability of the lakes system.
About the Authors
Ekaterina D. PavlyukevichRussian Federation
Moscow, 119991; Moscow, 119333
Inna N. Krylenko
Russian Federation
Moscow, 119991; Moscow, 119333
Ivan V. Krylenko
Russian Federation
Moscow, 119991
References
1. Aleynikova A.M. and Anatskaya E.E. (2019). Dynamics of glaciers and glacial lakes of the ala-arch river basin. Advances in Current Natural Sciences, 42–47. DOI: 10.17513/use.37195
2. Ali Washakh R.M., Pan X., Almas S., Umar Waque R.M., Li H., Rahman M., Ahmed S.R. and Majid Z. (2024). Deep learning-based GLOF modelling for hazard assessment and risk management. Georisk. DOI: 10.1080/17499518.2024.2379947
3. Allen S.K., Rastner P., Arora M., Huggel C. and Stoffel M. (2016). Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides, 13(6), 1479–1491. DOI: 10.1007/s10346-015-0584-3
4. Awal R., Nakagawa H., Kawaike K., Baba Y. and Zhang H. (2011). Study on moraine dam failure and resulting flood/debris flow hydrograph due to waves overtopping and erosion. Italian Journal of Engineering Geology and Environment - Book, 3–12. DOI: 10.4408/IJEGE.2011-03.B-001
5. Byers A.C., Rounce D.R., Shugar D.H., Lala J.M., Byers E.A. and Regmi D. (2019). A rockfall-induced glacial lake outburst flood, Upper Barun Valley, Nepal. Landslides, 16(3), 533–549. DOI: 10.1007/s10346-018-1079-9
6. Carrivick J.L. and Tweed F.S. (2016). A global assessment of the societal impacts of glacier outburst floods. Global and Planetary Change, 144, 1–16. DOI: 10.1016/j.gloplacha.2016.07.001
7. Chen Y.M., Liu C.H., Shih H.J., Chang C.H., Chen W.B., Yu Y.C., Su W.R. and Lin L.Y. (2019). An operational forecasting system for flash floods in mountainous areas in Taiwan. Water (Switzerland), 11(10). DOI: 10.3390/w11102100
8. Chernomorets S., Petrakov D., Aleynikov A.A., Bekkiev M.Y., Viskhadzhieva K., Dokukin M.D., Kalov R., Kidyaeva V., Krylenko V., Krylenko I. V, Krylenko I.N., Rets E., Savernyuk E. and Smirnov A.M. (2018). The outburst of Bashkara glacier lake (Central Caucasus, Russia). On September 1, 2017. XXII. DOI: 10.21782/EC2541-9994-2018-2(61-70)
9. Chernomorets S., Petrakov D., Krylenko I. V, Krylenko I.N., Tutubalina O., Aleynikov A.A. and Tarbeeva A. (2007). Changes of the Bashkara Glacier-lake system and assessment of debris flow hazard in the Adyl-su River Valley (Caucasus). Earth’s Cryosphere, 11, 72–84.
10. Chernomorets S.S. (2005). Selevye ochagi do i posle-katastrof , Nauchnyj m.
11. Costa J.E. and Schuster R.L. (1987). The formation and failure of natural dams. In: Open-File Report. DOI: 10.3133/ofr87392
12. Din K., Tariq S., Mahmood A. and Rasul G. (2014). Temperature and Precipitation: GLOF Triggering Indicators in Gilgit-Baltistan, Pakistan. In: Pakistan Journal of Meteorology , Vol. 10.
13. Dokukin M.D., Kalov R.K., Chernomorets S.S., Gyaurgiev A.V. and Khadzhiev M.M. (2020). The snow-ice-rock avalanche on Bashkara glacier in the Adyl-Su valley (Central Caucasus) on April 24, 2019. Earth`s Cryosphere, XXIV(1), 55–60. DOI: 10.21782/EC2541-9994-2020-1(55-60)
14. Dokukin M.D. and Khatkutov A. (2016). Lakes near the glacier Maliy Azau on the Elbrus (Central Caucasus): dynamics and outbursts. Ice and Snow, 56. DOI: 10.15356/2076-6734-2016-4-472-479
15. Dussaillant A., Benito G., Buytaert W., Carling P., Meier C. and Espinoza F. (2010). Repeated glacial-lake outburst floods in Patagonia: an increasing hazard? Natural Hazards, 54(2), 469–481. DOI: 10.1007/s11069-009-9479-8
16. Emmer A, Vilímek V., Huggel C., Klimeš J. and Schaub Y. (2016). Limits and challenges to compiling and developing a database of glacial lake outburst floods. Landslides, 13(6), 1579–1584. DOI: 10.1007/s10346-016-0686-6
17. Emmer Adam. (2017). Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru. Quaternary Science Reviews, 177, 220–234. DOI: https://doi.org/10.1016/j.quascirev.2017.10.028
18. Emmer Adam and Cochachin A. (2013). The causes and mechanisms of moraine-dammed lake failures in the cordillera blanca, North American Cordillera, and Himalayas. Acta Universitatis Carolinae, Geographica, 48(2), 5–15. DOI: 10.14712/23361980.2014.23
19. Harrison S, Kargel J.S., Huggel C., Reynolds J., Shugar D.H., Betts R.A., Emmer A., Glasser N., Haritashya U.K., Klimeš J., Reinhardt L., Schaub Y., Wiltshire A., Regmi D. and Vil’{i}mek V. (2018). Climate change and the global pattern of moraine-dammed glacial lakeoutburst floods. The Cryosphere, 12(4), 1195–1209. DOI: 10.5194/tc-12-1195-2018
20. Harrison Stephan, Kargel J.S., Huggel C., Reynolds J., Shugar D.H., Betts R.A., Emmer A., Glasser N., Haritashya U.K., Klimeš J., Reinhardt L., Schaub Y., Wiltshire A., Regmi D. and Vilímek V. (2018). Climate change and the global pattern of moraine-dammed glacial lake outburst floods. The Cryosphere, 12(4), 1195–1209. DOI: 10.5194/tc-12-1195-2018
21. Kornilova E.D., Krylenko I.N., Rets E.P., Motovilov Y.G., Bogachenko E.M., Krylenko I. V and Petrakov D.A. (2021). Modeling of Extreme Hydrological Events in the Baksan River Basin, the Central Caucasus, Russia. Hydrology, 8(1). DOI: 10.3390/hydrology8010024
22. Kovalev P.V. (1964). Traces of ancient glaciation on the Northern slope of the Central Caucasus and glaciological observations (1957- 1958). Information Collection about the Work on the International Hydrological Year, 10, 112–131.
23. Kropáček J., Neckel N., Tyrna B., Holzer N., Hovden A., Gourmelen N., Schneider C., Buchroithner M. and Hochschild V. (2015). Repeated glacial lake outburst flood threatening the oldest Buddhist monastery in north-western Nepal. Natural Hazards and Earth System Sciences, 15(10), 2425–2437. DOI: 10.5194/nhess-15-2425-2015
24. Liu J., Tang C. and Cheng Z. (2013). The two main mechanisms of Glacier Lake Outburst Flood in Tibet, China. Journal of Mountain Science, 10. DOI: 10.1007/s11629-013-2517-8
25. Lützow N., Veh G. and Korup O. (2023). A global database of historic glacier lake outburst floods. Earth System Science Data, 15(7), 2983–3000. DOI: 10.5194/essd-15-2983-2023
26. Milner A.M., Khamis K., Battin T.J., Brittain J.E., Barrand N.E., Füreder L., Cauvy-Fraunié S., Gíslason G.M., Jacobsen D., Hannah D.M., Hodson A.J., Hood E., Lencioni V., Ólafsson J.S., Robinson C.T., Tranter M. and Brown L.E. (2017). Glacier shrinkage driving global changes in downstream systems. In: Proceedings of the National Academy of Sciences of the United States of America , Vol. 114, Issue 37, 9770–9778. National Academy of Sciences. DOI: 10.1073/pnas.1619807114
27. Neupane R., Chen H. and Cao C. (2019). Review of moraine dam failure mechanism. Geomatics, Natural Hazards and Risk, 10, 1948–1966. DOI: 10.1080/19475705.2019.1652210
28. Petrakov D.A., Tutubalina O. V., Aleinikov A.A., Chernomorets S.S., Evans S.G., Kidyaeva V.M., Krylenko I.N., Norin S. V., Shakhmina M.S. and Seynova I.B. (2012). Monitoring of Bashkara Glacier lakes (Central Caucasus, Russia) and modelling of their potential outburst. Natural Hazards, 61(3), 1293–1316. DOI: 10.1007/s11069-011-9983-5
29. Petrasov V.V. (1979). Glacial mudflows in Dagestan. Debrisflows in the mountainous regions of the USSR, 46–57.
30. Popovnin V., Gubanov A., Lisak V. and Toropov P. (2024). Recent Mass Balance Anomalies on the Djankuat Glacier, Northern Caucasus. Atmosphere, 15, 107. DOI: 10.3390/atmos15010107
31. Poznanin V.L. (1979). Mechanism of mudflow outbursts of the moraine lake Kakhab-Rosona in Dagestan. Materials of Glaciological Research, 36, 218–223.
32. Pryakhina G., Boronina A., Rasputina V., Agatova A. and Ganyushkin D. (2021). Formation and evolution of moraine-dammed (periglacial) lake Nurgan, Northwestern Mongolia. Earth’s Cryosphere, 25. DOI: 10.15372/KZ20210403
33. Rasputina V.A., Pryakhina G. V., Ganyushkin D.A., Bantcev D. V. and Paniutin N.A. (2022). The water level regime of periglacial lakes during the growth stage (the lakes of the Tavan-Bogdo-Ola mountain massif, South-Eastern Altai). Led i Sneg, 62(3). DOI: 10.31857/S2076673422030143
34. Shrestha F., Steiner J.F., Shrestha R., Dhungel Y., Joshi S.P., Inglis S., Ashraf A., Wali S., Walizada K.M. and Zhang T. (2023). A comprehensive and version-controlled database of glacial lake outburstfloods in High Mountain Asia. Earth System Science Data, 15(9), 3941–3961. DOI: 10.5194/essd-15-3941-2023
35. Shugar D.H., Burr A., Haritashya U.K., Kargel J.S., Watson C.S., Kennedy M.C., Bevington A.R., Betts R.A., Harrison S. and Strattman K. (2020). Rapid worldwide growth of glacial lakes since 1990. Nature Climate Change, 10(10), 939–945. DOI: 10.1038/s41558-020-0855-4
36. Shugar D.H. and Clague J.J. (2011). The sedimentology and geomorphology of rock avalanche deposits on glaciers. Sedimentology, 58(7), 1762–1783. DOI: 10.1111/j.1365-3091.2011.01238.x
37. Taylor C., Robinson T.R., Dunning S., Rachel Carr J. and Westoby M. (2023). Glacial lake outburst floods threaten millions globally. Nature Communications, 14(1), 487. DOI: 10.1038/s41467-023-36033-x
38. Veh G., Lützow N., Kharlamova V., Petrakov D., Hugonnet R. and Korup O. (2022). Trends, Breaks, and Biases in the Frequency of Reported Glacier Lake Outburst Floods. Earth’s Future, 10(3), e2021EF002426. DOI: https://doi.org/10.1029/2021EF002426
39. Vilímek V., Emmer A., Huggel C., Schaub Y. and Würmli S. (2014). Database of glacial lake outburst floods (GLOFs)–IPL project No. 179. Landslides, 11(1), 161–165. DOI: 10.1007/s10346-013-0448-7
40. Westoby M.J., Glasser N.F., Brasington J., Hambrey M.J., Quincey D.J. and Reynolds J.M. (2014). Modelling outburst floods from moraine- dammed glacial lakes. In: Earth-Science Reviews , Vol. 134, 137–159. Elsevier. DOI: 10.1016/j.earscirev.2014.03.009
41. Zhang G., Yao T., Xie H., Wang W. and Yang W. (2015). An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Global and Planetary Change, 131, 148–157.
42. Zheng G., Allen S.K., Bao A., Ballesteros-Cánovas J.A., Huss M., Zhang G., Li J., Yuan Y., Jiang L., Yu T., Chen W. and Stoffel M. (2021). Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nature Climate Change, 11(5), 411–417. DOI: 10.1038/s41558-021-01028-3
43. Zhou B., Zou Q., Jiang H., Yang T., Zhou W., Chen S. and Yao H. (2024). A novel framework for predicting glacial lake outburst debris flows in the Himalayas amidst climate change. Science of The Total Environment, 946, 174435. DOI: https://doi.org/10.1016/j.scitotenv.2024.174435
Review
For citations:
Pavlyukevich E.D., Krylenko I.N., Krylenko I.V. Modern evolution and hydrological regime of the Bashkara Glacier Lakes system (Central Caucasus, Russia) after the outburst on September 1, 2017. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(4):66-75. https://doi.org/10.24057/2071-9388-2024-3717