Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Predicting the Impact of Land Use Changes on Thermal Environment in Lahore, Pakistan: Implications for Urban Planning

https://doi.org/10.24057/2071-9388-2023-2862

Abstract

Land use changes significantly threaten urban areas, especially in developing countries such as Pakistan, impacting the thermal environment and comfort of human life. The ongoing transformations in cities such as Lahore, the second largest and rapidly expanding urban center in Pakistan, are alarming due to the removal of green cover and the disruption of ecological structures. In response to these concerns, this study was conducted to assess and predict the implications of observed land use changes in Lahore. The analysis employed three Landsat images from 1990, 2005, and 2020, using ArcGIS and Idrisi Selva software. The results show that the built-up area increased almost 100% (16.44% to 32.48%) during the last three decades. Consequently, a substantial shift from low to medium and medium to high degrees of LST was observed. The projections indicate a further 50% expansion of the built-up area, encroaching upon green cover until 2050, shifting more areas under a higher LST spectrum. So, the study concludes that Lahore is facing imminent threats from rapid land use changes caused by higher land surface temperature in the study area, necessitating prompt attention and decisive action. The study area is at risk of losing its conducive environment and the desirable uniformity of the thermal environment. Therefore, it is recommended that green cover be strategically enhanced to offset the rise in built-up areas and ensure a sustainable thermal environment. 

About the Authors

Muhammad Jabbar
Department of Geography, University of Malaya
Malaysia


Muhammad Nasar-u-Minallah
Institute of Geography, University of the Punjab
Pakistan

Lahore, 54000



Mariney Mohd Yusoff
Department of Geography, University of Malaya
Malaysia

Kuala Lumpur



References

1. Adedeji, O. H., Adeofun, C. O., Tope-Ajayi, O. O., & Ogunkola, M. O. (2020). Spatio-temporal analysis of urban sprawl and land use/land cover changes in a suburb of Lagos and Ogun metropolises, Nigeria (1986-2014). Ife Journal of Science, 22(2), 27–42.

2. Ahmed, B., Kamruzzaman, M., Zhu, X., Rahman, M. S., & Choi, K. (2013). Simulating Land Cover Changes and Their Impacts on Land Surface Temperature in Dhaka, Bangladesh. Remote Sensing, 5(11), Article 11. https://doi.org/10.3390/rs5115969

3. Alam, N., Saha, S., Gupta, S., & Chakraborty, S. (2021). Prediction modelling of riverine landscape dynamics in the context of sustainable management of floodplain: A Geospatial approach. Annals of GIS, 27(3), 299–314.

4. Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office.

5. Anwar, M. M. and Bhalli, M. N. (2012) Urban Population Growth Monitoring and Land Use Classification by using GIS and Remote Sensing Techniques: A Case Study of Faisalabad City, Asian Journal of Social Science & Humanities, 1(1), 05-13.

6. Bhalli, M. N., Ghaffar, A., and Shirazi, S. A. (2012a). Spatio-temporal Patterns of Urban Growth in Faisalabad-Pakistan: A GIS Perspective. Journal of Research Society of Pakistan, 49(1), 115-134.

7. Bhalli, M. N., Ghaffar, A., Shirazi, S. A., Parveen, N. and Anwar, M. M. (2012b) Change Detection Analysis of Landuse by using Geospatial Techniques: A Case Study of Faisalabad- Pakistan, Science International, 24(4), 539-546.

8. Bhalli, M. N., Ghaffar, A. and Shirazi, S. A. (2012c) Remote Sensing and GIS Applications for Monitoring and Assessment of the Urban Sprawl in Faisalabad-Pakistan, Pakistan Journal of Science, 64(3), 203-208.

9. Bhalli, M. N., Ghaffar, A., Shirazi, S. A., and Parveen, N. (2013a). An analysis of the normalized difference vegetation index (NDVI) and its relationship with the population distribution of Faisalabad-Pakistan. Pakistan Journal of Science, 65 (3), 496-502.

10. Bhalli, M. N., Ghaffar, A., Shirazi, S. A., and Parveen, N. (2013b), Use of Multi-Temporal Digital Data to Monitor LULC Changes in FaisalabadPakistan. Pakistan Journal of Science, 65 (1), 58-62.

11. Bhalli, M. N. and Ghaffar, A. (2015). Use of Geospatial Techniques in Monitoring Urban Expansion and Land Use Change Analysis: A Case of Lahore, Pakistan. Journal of Basic & Applied Sciences, 11, 265-273.

12. Buyadi, S. N. A., Mohd, W. M. N. W., & Misni, A. (2013). Impact of land use changes on the surface temperature distribution of the area surrounding the National Botanic Garden, Shah Alam. Procedia-Social and Behavioral Sciences, 101, 516–525.

13. Daneshvar, M. R. M., Khatami, F., & Zahed, F. (2017). Ecological carrying capacity of public green spaces as a sustainability index of urban population: A case study of Mashhad city in Iran. Modeling Earth Systems and Environment, 3(3), 1161–1170.

14. Eastman, J. R. (2006). Eastman: Guide to GIS and Image Process. Clark Labs, Clark University.

15. Ernstson, H. (2013). The social production of ecosystem services: A framework for studying environmental justice and ecological complexity in urbanized landscapes. Landscape and Urban Planning, 109(1), 7–17.

16. FAO (2010) Global forest resource assessment. In: FAO Forestry paper 163, Main Report, Rome, Italy—Google Search. (n.d.). Retrieved July 2, 2021.

17. Fattah, M., Morshed, S. R., & Morshed, S. Y. (2021). Multi-layer perceptron-Markov chain-based artificial neural network for modelling future land-specific carbon emission pattern and its influences on surface temperature. SN Applied Sciences, 3(3), 1–22.

18. Feizizadeh, B., Blaschke, T., Nazmfar, H., Akbari, E., & Kohbanani, H. R. (2013). Monitoring land surface temperature relationship to land use/land cover from satellite imagery in Maraqeh County, Iran. Journal of Environmental Planning and Management, 56(9), 1290–1315.

19. Fu, W., Lü, Y., Harris, P., Comber, A., & Wu, L. (2018). Peri-urbanization may vary with vegetation restoration: A large scale regional analysis. Urban Forestry & Urban Greening, 29, 77–87.

20. Gallo, K. P., & Owen, T. W. (1999). Satellite-based adjustments for the urban heat island temperature bias. Journal of Applied Meteorology, 38(6), 806-813. 488.

21. Gonzalez-Redin, J., Gordon, I. J., Hill, R., Polhill, J. G., & Dawson, T. P. (2019). Exploring sustainable land use in forested tropical socialecological systems: A case study in the Wet Tropics. Journal of Environmental Management, 231, 940–952.

22. Gull, N., Adeel, M., Waseem, L. A., Hussain, D., Abbas, N., Elahi, A., Hussain, Z., Jan, B., Nasar-u-Minallah, M., and Naqvi, S. A. A. (2021). Computing Spatio-temporal variations in land surface temperature: A case study of Tehsil Murree, Pakistan. Journal of Geography and Social Sciences, 3(1), 17-30.

23. Guo, G., Wu, Z., Xiao, R., Chen, Y., Liu, X., & Zhang, X. (2015). Impacts of urban biophysical composition on land surface 489 temperature in urban heat island clusters. Landscape and Urban Planning, 135, 1-10.

24. Hanif, A., Nasar-u-Minallah, M., Zia, S., and Ashraf, I., (2022). Mapping and Analyzing the Park Cooling Intensity in Mitigation of Urban Heat Island Effect in Lahore, Pakistan. Korean Journal of Remote Sensing, 38(1), 127-137. https://doi.org/10.7780/kjrs.2022.38.1.10.

25. Hanif, A., Shirazi, S. A., Jabbar, M., Liaqat, A., Zia, S., & Yusoff, M. M. (2023). Evaluating The Visitors’ Perception and Available Ecosystem Services in Urban Parks of Lahore (Pakistan) Research Paper. Geography, Environment, Sustainability, 15(4), 32–38.

26. Hamad, R., Balzter, H., & Kolo, K. (2018). Predicting land use/land cover changes using a CA-Markov model under two different scenarios. Sustainability, 10(10), 3421.

27. Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 342(6160), 850–853. https://doi.org/10.1126/science.1244693

28. Henao, J. J., Rendón, A. M., & Salazar, J. F. (2020). Trade-off between urban heat island mitigation and air quality in urban valleys. Urban Climate, 31, 100542.

29. How Jin Aik, D., Ismail, M. H., & Muharam, F. M. (2020). Land use/land cover changes and the relationship with land surface temperature using Landsat and MODIS imageries in Cameron Highlands, Malaysia. Land, 9(10), 372.

30. Imran, M., & Mehmood, A. (2020). Analysis and mapping of present and future drivers of local urban climate using remote sensing: A case of Lahore, Pakistan. Arabian Journal of Geosciences, 13(6), 1–14.

31. Jabbar, M., Yusoff, M. M., & Shafie, A. (2021). Assessing the role of urban green spaces for human well-being: A systematic review. GeoJournal. https://doi.org/10.1007/s10708-021-10474-7

32. Jabbar, M., & Mohd Yusoff, M. (2022). Assessing and modelling the Role of Urban Green Spaces for Human Well-being in Lahore (Pakistan). Geocarto International. 1–21.

33. Jabbar, M., & Yusoff, M. M. (2022). Assessing The Spatiotemporal Urban Green Cover Changes and Their Impact on Land Surface Temperature and Urban Heat Island in Lahore (Pakistan). Geography, Environment, Sustainability, 15(1), 130–140.

34. Jabbar, M., Ghous, M., Hanif, A., Ali, Z., Ghaffar, A., & Munir, S. (2023). Assessing The Impact of Land Use Changes on Air Pollution Removal Capacity: A Three-Decade Analysis Applying The I-Tree Eco Model. Bulletin of Business and Economics (BBE), 12(2), 188–194.

35. Jafarpour Ghalehteimouri, K., Shamsoddini, A., Mousavi, M. N., Binti Che Ros, F., & Khedmatzadeh, A. (2022). Predicting spatial and decadal of land use and land cover change using integrated cellular automata Markov chain model based scenarios (2019–2049) Zarriné-Rūd River Basin in Iran. Environmental Challenges, 6, 100399. https://doi.org/10.1016/j.envc.2021.100399

36. Kayet, N., Pathak, K., Chakrabarty, A., & Sahoo, S. (2016). Urban heat island explored by co-relationship between land surface temperature vs multiple vegetation indices. Spatial Information Research, 24(5), 515–529.

37. Köhl, M., Lasco, R., Cifuentes, M., Jonsson, Ö., Korhonen, K. T., Mundhenk, P., de Jesus Navar, J., & Stinson, G. (2015). Changes in forest production, biomass and carbon: Results from the 2015 UN FAO Global Forest Resource Assessment. Forest Ecology and Management, 352, 21–34. https://doi.org/10.1016/j.foreco.2015.05.036

38. Lachowycz, K., & Jones, A. P. (2013). Towards a better understanding of the relationship between greenspace and health: Development of a theoretical framework. Landscape and Urban Planning, 118, 62–69.

39. Lahore Population 2024. (n.d.). Retrieved January 10 2024, from https://worldpopulationreview.com/world-cities/Lahore-population

40. Land Surface Temperature—An overview | ScienceDirect Topics. (n.d.). Retrieved December 30, 2021, from https://www.sciencedirect.com/topics/earth-and-planetary-sciences/land-surface-temperature

41. Larson, L. R., Jennings, V., & Cloutier, S. A. (2016). Public parks and well-being in urban areas of the United States. PLoS One, 11(4).

42. Liu, X., He, J., Yao, Y., Zhang, J., Liang, H., Wang, H., & Hong, Y. (2017). Classifying urban land use by integrating remote sensing and social media data. International Journal of Geographical Information Science, 31(8), 1675–1696. https://doi.org/10.1080/13658816.2017.1324976

43. Michetti, M., & Zampieri, M. (2014). Climate–human–land interactions: A review of major modelling approaches. Land, 3(3), 793–833.

44. Minallah, M. N., Rafique, M., Anwar, M. M., and Mohsin, M. (2016). Assessing the Urban Growth and Morphological Patterns of Gojra City, Pakistan. Sindh University Research Journal (Science Series), 48(2), 393-398.

45. Mohsin M. and Bhalli, M. N. (2015). Rapid Urban Growth and Change in Urban and Municipal Limits of Bahawalpur City, Pakistan: A Spatio-Periodical Discourse. Journal of Basic & Applied Sciences, 11,528-538.

46. Mundia, C. N., & James, M. M. (2014). Dynamism of land use changes on surface temperature in Kenya: A case study of Nairobi City.

47. Mustard, J. F., Defries, R. S., Fisher, T., & Moran, E. (2012). Land-use and land-cover change pathways and impacts. In Land change science (pp. 411–429). Springer.

48. Mazhar, N., Nasar-u-Minallah, M., Shirazi, S.A. et al. (2024). Spatio-temporal patterns and dynamics of sensitivity to sandification, in the Drylands of South Punjab, Pakistan. GeoJournal, 89, (15). https://doi.org/10.1007/s10708-024-11014-9.

49. Naeem, M., Nasar-U-Minallah, M., Tariq, B., Tariq, N., and Mushtaq, K. (2021). Monitoring Land-use Change and Assessment of Urban Expansion of Faisalabad, Pakistan using Remote Sensing and GIS. Pakistan Geographical Review, 76(1), 174-190.

50. Nasar-u-Minallah, M., Haase, D., Qureshi, S., Zia, S. and Munnaza, F. (2023). Ecological monitoring of urban thermal field variance index and determining the surface urban heat island effects in Lahore, Pakistan. Environ Monit Assess 195, 1212. https://doi.org/10.1007/s10661023-11799-1.

51. Nasar-u-Minallah, M., Zia S., Rahman A., and Riaz O. (2021). Spatio-Temporal Analysis of Urban Expansion and Future Growth Patterns of Lahore, Pakistan. Geography, Environment, Sustainability. 14(3):41-53. https://doi.org/10.24057/2071-9388-2020-215.

52. Nasar-u-Minallah, M. (2019). Retrieval of Land Surface Temperature of Lahore through Landsat-8 TIRS Data. International Journal of Economic and Environmental Geology, 10 (1), 70-77. https://doi.org/10.46660/ijeeg.Vol10.Iss1.2019.220

53. Nasar-u-Minallah, M. (2018). Spatial and Temporal Change Assessment in Land Surface Temperature of Lahore using GIS and Remote Sensing Techniques. Proceedings of the Pakistan Academy of Sciences: A. Physical and Computational Sciences, 55 (3): 67–75.

54. National Oceanic and Atmospheric Administration. (n.d.). Retrieved October 5, 2020, from https://www.noaa.gov/

55. Pakistan Meteorological Department PMD. (n.d.). Retrieved October 5, 2020, from http://www.pmd.gov.pk/index-old.html

56. Parveen, N., Ghaffar, A., Nasar-u-Minallah, M., and Ali, M. (2019). Analytical Study on Urban Expansion using the Spatial and Temporal Dynamics of Land Use Change in Faisalabad City, Pakistan. International Journal of Economic and Environmental Geology (IJEEG). 10 (3) 102108. https://doi.org/10.46660/ijeeg.Vol10.Iss3.2019.318

57. Rahman, M. T., Aldosary, A. S., & Mortoja, M. G. (2017). Modeling Future Land Cover Changes and Their Effects on the Land Surface Temperatures in the Saudi Arabian Eastern Coastal City of Dammam. Land, 6(2), Article 2. https://doi.org/10.3390/land6020036

58. Riaz, O., Munawar, H., Nasar-u-Minallah, M., Hameed, K.,and Khalid, M., (2017). Geospatial Analysis of Urbanization and its Impact on Land Use Changes in Sargodha, Pakistan. Journal of Basic & Applied Sciences, 13, 226-233. https://doi.org/10.6000/1927-5129.2017.13.39

59. Rozenstein, O., Qin, Z., Derimian, Y., & Karnieli, A. (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14(4), 5768–5780.

60. Schott, J. R. (2007). Remote sensing: The image chain approach. Oxford University Press on Demand.

61. Shao, Z., Sumari, N. S., Portnov, A., Ujoh, F., Musakwa, W., & Mandela, P. J. (2021). Urban sprawl and its impact on sustainable urban development: A combination of remote sensing and social media data. Geospatial Information Science, 24(2), 241–255. https://doi.org/10.1080/10095020.2020.1787800

62. Shah, S. A., Kiran, M., Nazir, A., & Ashrafani, S. H. (2022). Exploring NDVI and NDBI relationship using Landsat 8 OLI/TIRS in Khangarh taluka, Ghotki. Malaysian Journal of Geosciences (MJG), 6(1), 08-11.

63. Siddique, M. A. et al. (2020). Assessment and simulation of land use and land cover change impacts on the land surface temperature of Chaoyang District in Beijing, China. PeerJ 8, e9115.

64. Song, J., & Wang, Z.-H. (2015). Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ. Building and Environment, 94, 558–568.

65. Stürck, J., Schulp, C. J. E., & Verburg, P. H. (2015). Spatio-temporal dynamics of regulating ecosystem services in Europe – The role of past and future land use change. Applied Geography, 63, 121–135. https://doi.org/10.1016/j.apgeog.2015.06.009

66. Sun, R., & Chen, L. (2017). Effects of green space dynamics on urban heat islands: Mitigation and diversification. Ecosystem Services, 23, 38–46. https://doi.org/10.1016/j.ecoser.2016.11.011

67. Taubenböck, H., Esch, T., Felbier, A., Wiesner, M., Roth, A., & Dech, S. (2012). Monitoring urbanization in mega cities from space. Remote Sensing of Environment, 117, 162–176. https://doi.org/10.1016/j.rse.2011.09.015

68. Thilagavathi, N., Subramani, T., & Suresh, M. (2015). Land use/land cover change detection analysis in Salem Chalk Hills, South India using remote sensing and GIS. Disaster Adv, 8, 44–52.

69. Tran, D. X., Pla, F., Latorre-Carmona, P., Myint, S. W., Caetano, M., & Kieu, H. V. (2017). Characterizing the relationship between land use land cover change and land surface temperature. ISPRS Journal of Photogrammetry and Remote Sensing, 124, 119–132. https://doi.org/10.1016/j.isprsjprs.2017.01.001

70. Uddin, M. J., & Swapnil, F. J. (2021). Land Surface Temperature (LST) Estimation at Kushtia District, Bangladesh. Journal of Civil Engineering, Science and Technology, 12(2), 213–227.

71. Wan Mohd Jaafar, W. S., Abdul Maulud, K. N., Muhmad Kamarulzaman, A. M., Raihan, A., Md Sah, S., Ahmad, A., Saad, S. N. M., Mohd Azmi, A. T., Jusoh Syukri, N. K. A., & Razzaq Khan, W. (2020). The influence of deforestation on land surface temperature—A case study of Perak and Kedah, Malaysia. Forests, 11(6), 670.

72. Ward, C. (2013). Probing identity, integration and adaptation: Big questions, little answers. International Journal of Intercultural Relations, 37(4), 391–404.

73. Wolch, J. R., Byrne, J., & Newell, J. P. (2014). Urban green space, public health, and environmental justice: The challenge of making cities’ just green enough. Landscape and Urban Planning, 125, 234–244. https://doi.org/10.1016/j.landurbplan.2014.01.017

74. Yan, Y., Mao, K., Shi, J., Piao, S., Shen, X., Dozier, J., Liu, Y., Ren, H., & Bao, Q. (2020). Driving forces of land surface temperature anomalous changes in North America in 2002–2018. Scientific Reports, 10(1), 6931. https://doi.org/10.1038/s41598-020-63701-5

75. Zia, S., Mohsin, M., Nasar-u-Minallah, M., and Hanif, A. (2022). Site Suitability Analysis for Urban Settlements along River Jhelum, Pakistan using GIS and Remote Sensing Techniques. Indonesian Journal of Geography, 54(2), 22–239. https://doi.org/10.22146/ijg.72354.

76. Zhang, C., Sargent, I., Pan, X., Li, H., Gardiner, A., Hare, J., & Atkinson, P. M. (2019). Joint Deep Learning for land cover and land use classification. Remote Sensing of Environment, 221, 173–187. https://doi.org/10.1016/j.rse.2018.11.014

77. Zhao, M., Zhou, Y., Li, X., Cheng, W., Zhou, C., Ma, T., Huang, K., 2020. Mapping urban dynamics (1992–2018) in Southeast Asia using consistent nighttime light data from DMSP and VIIRS. Remote Sens. Environ. 248, 111980 https://doi.org/10.1016/j.rse.2020.111980.

78. Zhou, W., Wang, J., & Cadenasso, M. L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1–12.


Review

For citations:


Jabbar M., Nasar-u-Minallah M., Yusoff M. Predicting the Impact of Land Use Changes on Thermal Environment in Lahore, Pakistan: Implications for Urban Planning. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(1):95-109. https://doi.org/10.24057/2071-9388-2023-2862

Views: 1665


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)