Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Zoning of Desert, Steppe, Steppe-Forest and Forest Ecosystems By Carbon And Nitrogen Isotope in Mongolia and Western Transbaikalia

https://doi.org/10.24057/2071-9388-2023-2720

Abstract

The Mongolian–Transbaikalian region of the Central Asia is known for its wide range of intracontinental ecosystems from desert through steppe to taiga forest and mountain tundra. Data on the isotopic composition of carbon and nitrogen in the bone and dental tissues of herbivorous animals inhabiting the desert, steppe, and forest–steppe landscapes of Outer Mongolia and Western Transbaikalia are presented. The maximum values of the carbon isotope ratio are observed in animals from the desert (Gobi Desert) and the semi-desert landscapes, median (mean) δ13C is -17.9‰. The minimum values of δ13C were obtained by herbivorous animals of the forest-steppe and the forest landscapes (Transbaikalia), which median δ13C is -23‰. The fauna of the steppes (median δ13C is -21.7‰) has intermediate values of the carbon isotopic composition. According to the isotope composition of nitrogen, the isotope-geochemical isolation of ecosystems is less pronounced.

About the Authors

A. M. Khubanova
Dobretsov Geological Institute of Siberian Branch of Russian Academy of Sciences (GIN SB RAS)
Russian Federation

Anna M. Khubanova

6a, Sakh’yanovoy str., Ulan-Ude, Buryatia, 670047



V. B. Khubanov
Dobretsov Geological Institute of Siberian Branch of Russian Academy of Sciences (GIN SB RAS)
Russian Federation

Valentin B. Khubanov

6a, Sakh’yanovoy str., Ulan-Ude, Buryatia, 670047: +79246501514



D. A. Miyagashev
Institute of Mongolian, Buddhist and Tibetan Studies of Siberian Branch of Russian Academy of Sciences (IMBTS SB RAS)
Russian Federation

Denis A. Miyagashev

6, Sakh’yanovoy str., Ulan-Ude, Buryatia, 670047



References

1. Ambrose S.H. (1990). Preparation and characterization of bone and tooth collagen for isotopic analysis. Journal of Archaeological Science, 17, 431–451.

2. Ananyevskaya E., Akhatov G., Loman V., Dmitriev E., Ermolayeva A., Evdokimov A., Garbaras A., Goryachev A., Kukushkin A., Kukushkin I., Kurmankulov Z., Logvin A., Lukpanova Y., Onggar A., Sakenov S., Sapolaite J., Shevnina I., Usmanova E., Utubayev Z., Varfolomeev V., Voyakin D., Yarygin S., Motuzaitė Matuzeviciute G. (2020). The effect of animal herding practices on the diversity of human stable isotope values in north central Asia. Journal of Archaeological Science: Reports, 34, 102615. DOI: 10.1016/j.jasrep.2020.102615.

3. Arslanov Kh A. (1987). Radiocarbon: Geochemistry and Geochronology. Leningrad, USSR: Publishing House of Leningrad University (in Russian).

4. Atlas of Transbaikalia. (1967). (Buryat Autonomous Soviet Socialist Republic and the Chita Region). Sochava V B (eds.) Moscow–Irkutsk: Izd-vo GUGK,. 176 p. (in Russian).

5. Atlas of ecosystems of Mongolia. (2019). Gunin P.D., Sandar M. (eds.) Ulaanbaatar. ADMON Print.. 264 p.

6. Bååth R. (2023). Bayesboot: An Implementation of Rubin’s (1981) Bayesian Bootstrap. R package version 0.2.2, DOI://CRAN.R-project.org/package=bayesboot.

7. Barberena R., Zangrando A.F., Gil A.F., Martínez G.A., Politis G.G., Borrero L.A., Neme G.A. (2009). Guanaco (Lama guanicoe) isotopic ecology in southern South America: spatial and temporal tendencies, and archaeological implications. Journal of Archaeological Science, 36(12), 2666–2675, DOI: 10.1016/j.jas.2009.08.003.

8. Bocherens H., Fizet M., Mariotti A., Lange-Badre B., Vandermeersch B., Borel J.P., Bellon G. (1991). Isotopic biogeochemistry (13C, 15N) of fossil vertebrate collagen: application to the study of a past food web including Neandertal man. Journal of Human Evolution, 20, 481- 492, DOI: 10.1016/0047-2484(91)90021-M.

9. Bocherens H., Pacaud G., Lazarev А. P., Mariotti A. (1996). Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from Yakutia. Implications for the palaeobiology of the Mammoth Steppe. Palaeogeography, Palaeoclimatology, Palaeoecology, 126, 31-44, DOI: 10.1016/S0031-0182(96)00068-5.

10. Bocherens H. (2003). Isotopic biogeochemistry and the paleoecology of the mammoth steppe fauna. In: J.W.F. Reumer, J. De Vos, D. Mol ed., Advances in mammoth research. Proceedings of the Second Mammoth International Conference. Rotterdam, DEINSEA, 9, 57–76.

11. Bocherens H., Drucker D. (2003). Trophic level isotopic enrichment of carbon and nitrogen in bone collagen: сase studies from recent and ancient terrestrial ecosystems. International Journal of Osteoarchaeology, 13(1/2), 46-53, DOI: 10.1002/oa.662.

12. Bocherens H., Drucker D.G., Madelaine S. (2014). Evidence for a 15N positive excursion in terrestrial foodwebs at the Middle to Upper Palaeolithic transition in south-western France: Implications for early modern human palaeodiet and palaeoenvironment. Journal of Human Evolution, 69, 31-43, DOI: 10.1016/j.jhevol.2013.12.015.

13. Boldanov T.A., Mukhin G.D. (2019). Ecological Adaptation of Agricultural Land Use Under the Climate Change in the Republic of Buryatia. Arid Ecosystems, 9(1), 7-14, DOI: 10.24411/1993-3916-2019-00040.

14. Boykov T.G., Kharitonov Yu. D., Rupyshev Yu. A. (2002). The Steppes of Zabaikalye: Productivity, forage value, rational management and conservation. Ulan-Ude: BCS SB RAS (in Russian).

15. Britton K., Knecht R., Nehlich O., Hillerdal C., Davis R.S., Richards M.P. (2013). Maritime adaptations and dietary variation in prehistoric Western Alaska: Stable isotope analysis of permafrost-preserved human hair. American journal of physical anthropology, 151(3), 448-461, DOI: 10.1002/ajpa.22284.

16. Brown T.A., Nelson D.E., Vogel J.S., Southon J.R. (1988). Improved collagen extraction method by modified Longin method. Radiocarbon, 30(2), 171-177, DOI: 10.1017/S0033822200044118.

17. Burnik Šturm M., Ganbaatar O., Voigt C. C., Kaczensky P. (2017). Sequential stable isotope analysis reveals differences in dietary history of three sympatric equid species in the Mongolian Gobi. Journal of Applied Ecology, 54(4), 1110-1119, DOI: 10.1111/1365-2664.12825.

18. Chen S., Bai Y., Lin G., Huang J., Han X. (2007). Isotopic carbon composition and related characters of dominant species along an environmental gradient in Inner Mongolia, China. Journal of Arid Environments, 71(1), 12-28, DOI: 10.1016/j.jaridenv.2007.02.006.

19. Codron D., Codron J., Lee-Thorp J.A., Sponheimer M., de Ruiter D.D. (2005). Animal diets in the Waterberg based on stable isotopic composition of faeces. South African Journal of Wildlife Research, 35(1), 43–52, DOI: 10.5167/uzh-25362.

20. Dambaev V.B., Banzaraktsaeva T.G., Buyantueva L.B., Namsaraev B.B., Zyakun A.M. (2016). Carbon isotope variations of vegetation and soils in steppe pastures of Inner Asia. Geography and Natural Resources, 2, 118-124 (in Russian).

21. Davie H., Murdoch J.D., Lini A., Ankhbayar L., Batdorj S. (2014). Carbon and nitrogen stable isotope values for plants and mammals in a semi-desert region of Mongolia. Mongolian Journal of Biological Sciences, 12(1-2), 33-43, DOI: 10.22353/mjbs.2014.12.04.

22. Danzhalova E.V., Bazha S.N. (2008). Transformation of the main types of steppe ecosystems of Central Mongolia under the influence of grazing. The bulletin of KSAU, 2, 98-104.

23. DeNiro M.J., Epstein S. (1981). Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et cosmochimica acta, 45(3), 341-351, DOI: 10.1016/0016-7037(78)90199-0.

24. DeNiro M.J., Schoeninger M.J. (1983). Stable Carbon and Nitrogen Isotope Ratios of Bone Collagen: Variations within Individuals, Between Sexes, and Within Populations Raised on Monotonous Diet. Journal of Archaeological Science, 10(3): 199-203, DOI: 10.1016/03054403(83)90002-X.

25. Di Matteo A., Kuznetsova T.V., Nikolaev V.I., Spasskaya N.N., Jakumin P. (2013). Isotope studies of fossil bones of Pleistocene Yakut horses. Ice and Snow, 53(2), 93-101, DOI: 10.15356/2076-6734-2013-2-93-101.

26. Drucker D.G., Hobson K. A., Ouellet J.-P., Courtois R. (2010). Influence of forage preferences and habitat use on 13C and 15N abundance in wild caribou (Rangifer tarandus caribou) and moose (Alces alces) from Canada. Isotopes in Environmental and Health Studies, 46 (1), 107121, DOI: 10.1080/10256010903388410.

27. Drucker D.G., Bridault A, Cupillard C., Hujic A., Bocherens H. (2011). Evolution of habitat and environment of red deer (Cervus elaphus) during the Late-glacial and early Holocene in eastern France (French Jura and the western Alps) using multi-isotope analysis (δ13C, δ15N, δ18O, δ34S) of archaeological remains. Quaternary International, 245(2), 268-278, DOI: 10.1016/j.quaint.2011.07.019.

28. Ecological and Geographical Atlas-monograph «Selenga – Baikal». (2019). N.S. Kasimov, ed., Lomonosov Moscow State University Publ. (in Russian).

29. Fernandez J., Markgraf V., Panarello H.O., Albero M., Angio1ini F.E., Valencio S., Arriaga M. (1991). Late Pleistocene/Early Holocene environments and climates, fauna, and human occupation in the Argentine Altiplano. Geoarchaeology: An International Journal, 6(3), 251272. DOI: 10.1002/gea.3340060303.

30. Fizet M., Mariotti A. M., Bocherens H., Lange-Badre B., Vandermeersch B., Borel J.P., Bellon G. (1995). Effect of diet, physiology and climate on carbon and nitrogen stable isotopes of collagen in a late Pleistocene anthropic palaeoecosystem: Marillac, Charente, France). Journal of Archaeological Science, 22: 67-79, DOI: 10.1016/S0305-4403(95)80163-4.

31. Fogel M.L., Tuross N., Owsley D.W. (1989). Nitrogen isotope tracers of human lactation in modern and archaeological populations. Annual report of the director, geophysical laboratory. Carnegie Inst. Wash. 89, 111-117.

32. Fox N.S., Southon J.R., Howard C.M., Takeuchi G.T., and Potze S. and Farrell A.B., Lindsey E.L., Blois J. L. (2023). Millennial-scale drivers of small mammal isotopic niche dynamics in Southern California. Palaeogeography, Palaeoclimatology, Palaeoecology, 612, 111378, DOI: 10.1016/j.palaeo.2022.111378.

33. France C.A.M., Owsley D.W., Hayek L.C. (2014). Stable isotope indicators of provenance and demographics in 18th and 19th century North Americans. Journal of Archaeological Science, 42, 356-366, DOI: 10.1016/j.jas.2013.10.037.

34. Germonpre M., Lbova L. (1996). Mammalian Remains from the Upper Palaeolithic Site of Kamenka, Buryatia (Siberia). Journal of Archaeological Science, 23, 35-57, DOI: 10.1006/jasc.1996.0004.

35. Goldman R. (2010). Spatial Variation of Stable Carbon and Nitrogen Isotope Ratios and C:N of Perennial Plant Species in the Steppe Grassland of Northern Mongolia. Master of Environmental Studies Capstone Projects [online]. 38. Available at: https://repository.upenn.edu/mes_capstones/38.

36. Golovanov D.L., Kazantseva T.I., Yamnova I.A. (2004). Natural and anthropogenic degradation processes of the soil cover of the desert steppes of Mongolia (on the example of somon Bulgan). Arid ecosystems, 10, 24-25.

37. Gorlova E.N., Krylovich O.A., Tiunov A.V., Khasanov B.F., Vasyukov D.D., Savinetskiy A.B. (2015). Stable-isotope analysis as a method of taxonomical identification of archaeozoological material. Archaeology, Ethnology and Anthropology of Eurasia, 43(1): 110–121, DOI: 10.17746/1563-0102.2015.43.1.110–121 (in Russian).

38. Jenkins S.G., Partridge S.T., Stephenson T.R., Farley S.D., Robbins C.T. (2001). Nitrogen and carbon isotope fractionation between mothers, neonates, and nursing offspring. Oecologia, 129, 336-341, DOI: 10.1007/s004420100755.

39. Kalapos T., Baloghne-Nyakas A., Csontos P. (1997). Occurrense and ecological characteristiks of C4 dicot and Cyperaceae species in the Hungarian flora. Photosynthetica, 33 (2), 227–240, DOI: 10.1023/A:1022112329990.

40. Khatri P.K., Larcher R., Camin F., Ziller L., Tonon A., Nardin T., Bontempo L. (2021). Stable Isotope Ratios of Herbs and Spices Commonly Used as Herbal Infusions in the Italian Market. ACS Omeg, 6, 11925–11934, DOI: 10.1021/acsomega.1c00274.

41. Khubanova A.M., Khubanov V.B., Novoseltseva V.M., Sokolova N.B., Klementyev A.M., Posokhov V.F. (2017). Features of the composition of carbon and nitrogen isotopes in teeth collagen of Equus ferus and Alces americanus from archaeological location Ust-Keul I (Northern Angara region). The Bulletin of Irkutsk State University. Series “Geoarchaeology. Ethnology. Anthropology”, 21, 33–59.

42. Koch P.L., Hoppe K.A., Webb S.D. (1998). The isotopic ecology of late Pleistocene mammals in North America: Part 1. Florida. Chemical Geology, 152(1-2), 119-138, DOI: 10.1016/S0009-2541(98)00101-6.

43. Kohzu A., Iwata T., Kato M., Nishikawa J., Wada E., Amartuvshin N., Namkhaidorj B., Fujita N. (2009). Food webs in Mongolian grasslands: The analysis of 13C and 15N natural abundances. Isotopes in Environmental and Health Studies, 45(3), 208-219, DOI: 10.1080/10256010902871887.

44. Kradin N.N., Khubanova A.M., Bazarov B.A., Miyagashev D.A., Khubanov V.B., Konovalov P.B., Klementiev A.M., Posokhov V.F., Ventresca Miller A.R. (2021) Iron age societies of Western Transbaikalia: Reconstruction of diet and lifeways. Journal of Archaeological Science: Reports, 38, 102973, DOI: 10.1016/j.jasrep.2021.102973.

45. Krajcarz M., Pacher M., Krajcarz M.T., Laughlan L., Rabeder G., Sabol M., Wojtal P., Bocherens H. (2016). Isotopic variability of cave bears (d15N, d13C) across Europe during MIS3. Quaternary Science Reviews, 131, 51-72, DOI: 10.1016/j.quascirev.2015.10.028.

46. Krylovich O.A., Boeskorov G.G., Shchelchkova M.V., Savinetsky A.B. (2020). Trophic position of pleistocene and modern brown bears (Ursus arctos) of Yakutia based on stable isotope analyses. Biology Bulletin, 47, 1013-1021, DOI: 10.31857/S0044513420050074.

47. Kuzmin Y.V., Bondarev A.A., Kosintsev P.A., Zazovskaya, E.P. (2021). The Paleolithic diet of Siberia and Eastern Europe: evidence based on stable isotopes (δ13C and δ15N) in hominin and animal bone collagen. Archaeological and Anthropological Sciences, 13, 1-12, DOI: 10.1007/s12520-021-01439-5; WoS: 000702780200001.

48. Kuzmin, Y.V., Shpansky, A.V. (2023).The Late Pleistocene megafauna of the Chulym River basin, southeastern West Siberian Plain: chronology and stable isotope composition. Journal of Quaternary Science, 38, 1, 2–7, DOI:10.1002/jqs.3470.

49. Lee-Thorp J. A. (2008). On isotopes and old bones. Archaeometry, 50(6), 925-950, DOI:10.1111/j.1475-4754.2008.00441.x.

50. Li M. C., Liu H. Y., Yi X. F., Li L. X. (2006). Characterization of photosynthetic pathway of plant species growing in the eastern Tibetan plateau using stable carbon isotope composition. Photosynthetica, 44(1), 102-108, DOI: 10.1007/s11099-005-0164-1.

51. Li M.C., Zhu J.J., Li L.X. (2009). Occurrence and altitudinal pattern of C4 plants on Qinghai Plateau, Qinghai province, China. Photosynthetica, 47(2), 298-303, DOI:10.1007/s11099-009-0046-z.

52. Liu X. Q., Wang R. Z., Li Y. Z. (2004). Photosynthetic pathway types in rangeland plant species from Inner Mongolia, North China. Photosynthetica, 42, 339–344, DOI: 10.1023/B:PHOT.0000046150.74045.46.

53. Liu X.Z., Wang G.A., Li J.Z., Wang Q. (2009). Nitrogen isotope composition characteristics of modern plants and their variations along an altitudinal gradient in Dongling Mountain in Beijing. Science in China Series D-Earth Sciences, 53(1), 128-140, DOI: 10.1007/s11430-0090175-z.

54. Longin R. (1971). New method of collagen extraction for radiocarbon dating. Nature, 230, 241–242, DOI: 10.1038/230241a0.

55. Ma J. Y., Sun W., Liu X. N., Chen F. H. (2012). Variation in the Stable Carbon and Nitrogen Isotope Composition of Plants and Soil along a Precipitation Gradient in Northern China. PLoS ONE, 7(12), e51894, DOI: 10.1371/journal.pone.0051894.

56. Makarewicz C., Tuross N. (2006). Foddering by Mongolian pastoralists is recorded in the stable carbon (d13C) and nitrogen (d15N) isotopes of caprine dentinal collagen. Journal of Archaeological Science, 33(6), 862-870, DOI: 10.1016/j.jas.2005.10.016.

57. Makarewicz C. (2017). Winter is coming: seasonality of ancient pastoral nomadic practices revealed in the carbon (δ13C) and nitrogen (δ15N) isotopic record of Xiongnu caprines Archaeological and Anthropological Sciences, 9, 405-418, DOI: 10.1007/s12520-015-0289-5.

58. Makarewicz C., Winter-Schuh C., Byerly H., Houle J.-L. (2018). Isotopic evidence for ceremonial provisioning of Late Bronze age khirigsuurs with horses from diverse geographic locales. Quaternary International 476 (20): 70–81, DOI: 10.1016/j.quaint.2018.02.030.

59. Mann H.B., Whitney D.R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematical Statistics, 18, 50-60. DOI: 10.1214/aoms/1177730491.

60. Martin B, Thorstenson Y.R. (1988). Stable Carbon Isotope Composition (δ13C), Water Use Efficiency, and Biomass Productivity of Lycopersicon esculentum, Lycopersicon pennellii, and the F1 Hybrid. Plant Physiol, 88, 213–217, DOI: 10.1104/pp.88.1.213.

61. Naidanov B.B. (2009). The saline habitat flora of Southwestern Transbaikalia: feed assessment. The Bulletin of KSAU, 11(38), 39-43.

62. Nikolaev V.I., Ryskov Ya. G., Yakumin P. (2006). Stable isotope investigation of bone remains from archaeological excavations (methodological aspects). Stable isotopes in palaeoecological studies. Moscow, Institute of Geography RAS Publ. (in Russian).

63. O’Leary M.H. (1988). Carbon isotopes in photosynthesis. Bioscience, 38(5), 328-336, DOI: 10.2307/1310735.

64. Osipov K.I. (2005). Flora of the Vitim Plateau (Northern Transbaikal region). Ulan-Ude: BSC SB RAS (In Russian).

65. O’Regan H.J., Lamb A.L., Wilkinson D.M. (2016). The missing mushrooms: searching for fungi in ancient human dietary analysis. Journal of Archaeological Science, 75, 139-143, DOI: 10.1016/j.jas.2016.09.009.

66. Oyungerel S., Tsendeekhuu T., Tserenkhand G. (2004). A Study to Detect CAM Plants in Mongolia. Mongolian Journal of Biological Sciences, 2(1), 29-37, DOI: 10.22353/mjbs.2004.02.04.

67. Palmqvist P., Grocke D.R., Arribas A., Farina R.A. (2003). Palaeoecological reconstruction of a lower Pleistocene large mammal community using biogeochemical (δ13C, δ15N, δ18O, Sr:Zn) and ecomorphological approaches. Paleobiology, 29(2), 205-229, DOI: 10.1666/0094-8373(2003)029<0205:PROALP>2.0.CO;2.

68. Pearcy R.W., Troughton J. (1975). C4 photosynthesis in tree form Euphorbia species from Hawaiian rainforest sites. Plant Physiology, 55(6), 1054-1056, DOI: 10.1104/pp.55.6.1054.

69. Petukhov I.A., Bazha S.N., Danzhalova E.V., Drobyshev Yu.I., Syrtypova S.-Kh.D., Bogdanov E.A., Enkh-Amgalan S., Gunin P.D. (2018). Longterm Dynamics of Pasture Ecosystem Conditions in the Ecotone Zone of Dry and Desert Steppes of Central Mongolia (Middle Gobi Aimag). Ecosystems: Ecology and Dynamics, 2(2), 5-39 (in Russian).

70. Pidoplichko I.G. (1952). A New Determination Method for Geological Age of Fossil Bones of the Quaternary System), Kiev: Akad. Nauk USSR. (In Russian).

71. Pyankov V.I., Gunin P.D., Tsoog S., Black C.C. (2000). C4 plants in the vegetation of Mongolia: their natural occurrence and geographical distribution in relation to climate. Oecologia, 123, 15–31, DOI: 10.1007/s004420050985.

72. Rubin D.B. (1981). The bayesian bootstrap. The Annals of Statistics, 9 (1), 130–134.

73. Safronova I. N., Karimova T. Y., Zhargalsaikhan L. (2018). Current state assessment of the vegetation cover in the Khentei Aimag of Mongolia. Arid ecosystems, 24(1/74), 68-78.

74. Simukov A.D. (2007). Publications about Mongolia and for Mongolia. Edited by Yuki Konagaya, Sanjaasüren Bayaraa, and Ichinkhorloo Lkhagvasüren. Osaka: National Museum of Ethnology, 1 (in Russian).

75. Skippington J., Manne T., Veth P. (2021). Isotopic Indications of Late Pleistocene and Holocene Paleoenvironmental Changes at Boodie Cave Archaeological Site, Barrow Island, Western Australia. Molecules, 26 (9), 2582, DOI: 10.3390/molecules26092582.

76. Spasojevic M.J., Weber S. (2021). Variation in δ13C and δ15N within and among plant species in the alpine tundra. Arctic, Antarctic, and Alpine Research, 53(1), 340-351, DOI: 10.1080/15230430.2021.2000567.

77. Svyatko S.V. (2016). Stable Isotope Analysis: Outline of Methodology and a Review of Studies in Siberia and the Eurasian Steppe. Аrchaeology, Ethnology and Anthropology of Eurasia, 44(2), 47–55, DOI: 10.17746/1563-0110.2016.44.2.047-055.

78. Structure and Dynamics of the Steppe Ecosystems of Eastern Mongolia (by an example of the Tumentsogt Station). (2018). Moscow: Tovarishchestvo Nauchnykh Izdaniy KMK (in Russian).

79. Su Y., Chen L., Li Y., Meng W., Zhu Z., Uan C., Wang S., Zhu L. (2019). Relationship between Growth Characteristics and Stable Carbon Isotope of Artemisia scoparia in a Desert Steppe. Acta Agrestia Sinica, 27(4), 859-866, DOI: 10.11733/j.issn.1007-0435.2019.04.009.

80. Tahmasebi F., Longstaffe F.J., Zazula G. (2018). Nitrogen isotopes suggest a change in nitrogen dynamics between the Late Pleistocene and modern time in Yukon, Canada. PLoS ONE 13 (2), e0192713, DOI: 10.1371/journal.pone.0192713.

81. Tanaka-Oda A., Endo I., Ohte N., Eer D., Yamanaka N., Hirobe M., ... and Yoshikawa K. (2018). A water acquisition strategy may regulate the biomass and distribution of winter forage species in cold Asian rangeland. Ecosphere, 9(12), e02511, DOI: 10.1002/ecs2.2511.

82. The Ecological Atlas of the Baikal Basin. In: Plyusnin V M (eds.). Irkutsk: Sochava institute of geography press, 2015.

83. Tsogmansrai D., Dugarzhav Ch. (2016). The effectiveness of some restoration methods of degraded pastures of the desert-steppe zone of Mongolia. Arid ecosystems, 22(3-68), 56-62.

84. Ulyanov A.N., Kulikova A.Y., Grigoryeva O.G. (2011). Actual problems of modern sheep breeding in Russia. Sheep, goats, wool business, 3, 54-60.

85. Urtnasan M., Lyubarskiy E.L. (2013). Pasture digression in the steppes of central Mongolia (on the example of Somon Batsumbar of the central aimag of Mongolia). Scientific notes of Kazan University: series “Natural science”, 155(1), 258-170.

86. Van der Merwe N. J. (1992). Light stable isotopes and the reconstruction of prehistoric diets. In: Pollard A M (eds.). New Developments in Archaeological Science. Proceedings of the British Academy 77, Oxford University Press, Oxford, UK, 247-264.

87. Ventresca Miller A.R., Bragina T.M., Abil Y.A., Rulyova M.M., Makarewicz C.A. (2019). Pasture usage by ancient pastoralists in the northern Kazakh steppe informed by carbon and nitrogen isoscapes of contemporary floral biomes. Archaeological and Anthropological Sciences, 11, 2151-2166. DOI: 10.1007/s12520-018-0660-4.

88. Wang G., Han J., Zhou L., Xiong X., Tan M., Wu Z., Peng J. (2006). Carbon isotope ratios of C 4 plants in loess areas of North China. Science in China: Series D Earth Science, 49(1), 97-102, DOI: 10.1007/s11430-004-5238-6.

89. Weber A.W., White D., Bazaliiskii V.I., Goriunova O.I., Saveliev N.A., Katzenberg M.A. (2011). Hunter–gatherer Foraging Ranges, Migrations, and Travel in the Middle Holocene Baikal Region of Siberia: Insights from Carbon and Nitrogen Stable Isotope Signatures. Journal of Anthropological Archaeology, 30(4), 523–548, DOI: 10.1016/j.jaa.2011.06.006.

90. Wen Z., Zhang M. (2011). Anatomical types of leaves and assimilating shoots and carbon 13C/12C isotope fractionation in Chinese representatives of Salsoleae s.l. (Chenopodiaceae). Flora, 206, 720–730, DOI: 10.1016/j.flora.2010.11.015.

91. Winter K. (1981). C4 Plants of High Biomass in Arid Regions of Asia -Occurrence of C4 Photosynthesis in Chenopodiaceae and Polygonaceae from the Middle East and USSR. Oecologia (Berl), 48,100-106, DOI: 10.1007/BF00346994.

92. Xu Y, He J, Cheng W, Xing X., Li L. (2010). Natural 15N abundance in soils and plants in relation to N cycling in a rangeland in Inner Mongolia. J. Plant Ecol., 3, 201–207, DOI: 10.1093/jpe/rtq023.

93. Yudina P.L., Ivanova L.A., Ronzhina D.A., Ivanov L.A. (2015). Intraspecific variation of leaf mesostructure indices of steppe plants in Western Transbaikalia. Problems of botany in Southern Siberia and Mongolia: materials of the XIV international scientific and practical conference. Barnaul: ASU. 466-469.


Review

For citations:


Khubanova A.M., Khubanov V.B., Miyagashev D.A. Zoning of Desert, Steppe, Steppe-Forest and Forest Ecosystems By Carbon And Nitrogen Isotope in Mongolia and Western Transbaikalia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(3):14-31. https://doi.org/10.24057/2071-9388-2023-2720

Views: 583


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)