Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Formation Conditions And Debris Flow Regime In Jiangjia Ravine, Yunnan, China – Applicability Of Russian Methodology

https://doi.org/10.24057/2071-9388-2020-156

Full Text:

Abstract

The requirements of the debris flows’ parameters assessments vary from country to country. They are based on different theoretical and empirical constructions and are validated by data from different regions. This makes difficult comparison of the reported results on estimated debris flows activity and extent. The Russian normative documents for the debris flows’ parameters calculations are based on empirically-measured parameters in wide range of geological and climatic conditions at the territory of former USSR, but still not cover all the possible conditions of debris flow formation. An attempt was made to check applicability of the Russian empirical constructions for the conditions of the debris flows formation in Yunnan, China, where unique long-term dataset of debris flows characteristics is collected by the Dongchuan Debris Flow Observation and Research Station. The results show, that in general the accepted in Russia methodology of calculation of the parameters of debris flows of certain probability corresponded well to the observed in Dongchuan debris flows characteristics. Some discrepancies (in the average debris flow depth) can be explained by unknown exact return period of the actually observed debris flows. This allowed to conclude that the presently adopted empirical dependencies based on country-wide (USSR) empirical data can be extrapolated up to the monsoon climate and geological conditions of Yunnan province.

About the Authors

Mingtao Ding
Southwest Jiaotong University
China

Faculty of Geosciences and Environment Engineering 

The Western Park of the HiTech Industrial Development Zone (Xipu Town), Chengdu, Sichuan, 611756, China



Aleksandr L. Shnyparkov
Lomonosov Moscow State University
Russian Federation

Faculty of Geography

Leninskie gory 1, Moscow, 119991



Pavel B. Grebennikov
Lomonosov Moscow State University
Russian Federation

Faculty of Geography

Leninskie gory 1, Moscow, 119991



Timur I. Khismatullin
Lomonosov Moscow State University
Russian Federation

Faculty of Geography

Leninskie gory 1, Moscow, 119991



Sergey A. Sokratov
Lomonosov Moscow State University
Russian Federation

Faculty of Geography

Leninskie gory 1, Moscow, 119991



References

1. Belaya N.L. (2005). Modeling of intra–annual distribution of rainstorms in mountain regions of the world. Diss. on the degree of Candidate of geographical Sciences. Moscow, 187 (in Russian).

2. Chen J., He Y.P., Wei F.Q. (2005). Debris flow erosion and deposition in Jiangjia Gully, Yunnan, China. Environmental Geology, 48(6), 771–777, DOI: 10.1007/s00254–005–0017–z.

3. Chen N.S., Zhu Y.H., Huang Q. (2017). Mechanisms involved in triggering debris flows within a cohesive gravel soil mass on a slope: A case in SW China. Journal of Mountain Science, 14(4), 611-620, DOI: 10.1007/s11629-016-3882-x.

4. Chen S.C., Wu H.Y., Peng S.H. (2007). Experimental and numerical comparison of the density current movement induced by instantaneous inflow on steep slope. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 241-250.

5. Chou H.T., Cheung Y.L., Zhang S.C. (2007). Calibration of infrasound monitoring system and acoustic characteristics of debris–flow movement by field studies. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 571-580.

6. Comiti F., Marchi L., Macconi P., Arattano M., Bertoldi G., Borga M., Brardinoni F., Cavalli M., D’Agostino V., Penna D., Theule J. (2014). A new monitoring station for debris flows in the European Alps: first observations in the Gadria basin. Natural Hazards, 73(3), 1175-1198, DOI: 10.1007/s11069-014-1088-5.

7. Cui P., Chen X.P., Wang Y.Y., Hu K.H., Li Y. (2005). Jiangjia Ravine debris flows in the southwestern China. In: M. Jakob & O. Hungr, eds., Debris flow hazards and related phenomena. Berlin Heidelberg: Springer-Verlag, 565-594, DOI: 10.1007/3-540-27129-5_22.

8. Cui P., Zhu Y.Y., Chen J., Han Y.S., Liu H.J. (2007). Relationships between antecedent rainfall and debris flows in Jiangjia Ravine, China. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 3-10.

9. Cui P., Zou Q., Xiang L.-z., Zeng Ch. (2013). Risk assessment of simultaneous debris flows in mountain townships. Progress in Physical Geography, 37(4), 516-542, DOI: 10.1177/0309133313491445.

10. Daniell J. (2010). Damaging Earthquakes Database. 2010 – The Year in Review. Australian Earthquake Engineering Society; «M 5.2 – Yunnan, China». www.earthquake.usgs.gov. [Accessed January 3, 2020].

11. Data collection of Dongchuan debris flow observation and research station Chinese Academy of Sciences (1961–1984). (2006). Z. Jun, X. Gang, eds. Science Press. (in Chinese).

12. Data collection of Dongchuan debris flow observation and research station Chinese Academy of Sciences (1995–2000). (2007). Z. Jun, X. Gang, eds. Science Press. (in Chinese).

13. Data collection of kinematic observation of debris flows in Jiangjia Ravine, Dongchuan, Yunnan (1987–1994). (1997). Z. Jun, X. Gang, eds. Science Press. (in Chinese).

14. Du R.H., Kang Z.C., Chen X.Q. (1987). Investigation and prevention planning of debris flows in Xiaojiang River, Yunnan. Chongqing: Chongqing Branch of Science and Technology Literature Press. (In Chinese).

15. Fu X.D., Wang G.Q., Kang Z.C., Fei X.J. (2006). Planar velocity distribution of viscous debris flow at Jiangjia Ravine, Yunnan, China: A field measurement with two radar velocimeters. Wuhan University Journal of Natural Sciences, 12(4), 531-538, DOI: 10.1007/s11859-006-0297-5.

16. Gao Y.C, Chen N.S, Hu G.S, Deng M.F. (2019). Magnitude–frequency relationship of debris flows in the Jiangjia Gully, China. Journal of Mountain Science, 16(6), 1289-1299, DOI: 10.1007/s11629–018–4877–6.

17. Guo X., Lia Y., Cuia P., Yana H., Zhuang J. (2020). Intermittent viscous debris flow formation in Jiangjia Gully from the perspectives of hydrological processes and material supply. Journal of Hydrology, 589, 125-184, DOI: 10.1016/j.jhydrol.2020.125184.

18. Guo X.J., Cui P., Li Y. (2013). Debris flow warning threshold based on antecedent rainfall: a case study in Jiangjia Ravine, Yunnan, China. Journal of Mountain Science, 10(2), 305-314, DOI: 10.1007/s11629-013-2521-z.

19. Helsen M., Koop P., Van Steijn H. (2002). Magnitude–frequency relationship for debris flows on the fan of the Chalance torrent, Valgaudemar (French Alps). Earth Surface Processes and Landforms, 27(12), 1299-1307, DOI: 10.1002/esp.412.

20. Hu M., Wang R., Shen J. (2011). Rainfall, landslide and debris flow intergrowth relationship in Jiangjia Ravine. Journal of Mountain Science, 8(4), 603-610, DOI: 10.1007/s11629-011-2131-6.

21. Huang Y., Ding M., Miao Ch., Wang J., Zhou P. (2015). Characteristics and evolution of debris flow motion in Jiangjia gully in Yunnan province. Resources and Environment in the Yangtze Basin, 24(8), 1434-1442. (in Chinese).

22. Hungr O., McDougall S., Wise M., Cullen M. (2008). Magnitude–frequency relationships of debris flows and debris avalanches in relation to slope relief. Geomorphology, 96(3), 355-365, DOI: 10.1016/j.geomorph.2007.03.020.

23. Hürlimann M., Abancó C., Moya J., Vilajosana I. (2014). Results and experiences gathered at the Rebaixader debris-flow monitoring site, Central Pyrenees, Spain. Landslides, 11(6), 939-953, DOI: 10.1007/s10346-013-0452-y.

24. Jakob M, Friele P. (2010). Frequency and magnitude of debris flows on Cheekye River, British Columbia. Geomorphology, 114(3), 382-395, DOI: 10.1016/j.geomorph.2009.08.013.

25. Johnson P.A, McCuen R.H, Hromadka T.V. (1991). Magnitude and frequency of debris flows. Journal of Hydrology, 123(1-2), 69-82, DOI: 10.1016/0022-1694(91)90069-T.

26. Kang Z.C., Hu P.H. (1990). Measurements for kinematic parameters of debris flows in Jiangjia Gully. In: J.S. Wu, Z.C. Kang, L.Q. Tian, eds., Observation and study of debris flows in Jiangjia Gully, Yunnan. Beijing: Science Press, 99-140. (in Chinese).

27. Li J., Yuan J., Bi Ch., Luo D.F. (1983). The main features of the mudflow in Jiangjia Ravine. Zeitschrift für Geomorphologie, 27(3), 325-341, DOI: 10.1127/zfg/27/1983/325.

28. Li Y., Kang Z.C., Yue Z.Q., Tham L.G., Lee C.F., Law K.T. (2003). Surge waves of debris flow in Jiangjia Gully, Kunming, China. In: L. Picarelli, ed., Fast slope movements prediction and prevention for risk mitigation, Naples, May 11-13, 1. Bologna: Patron Italy, 303–307.

29. Li Y., Liu J.J., Hu K.H., Su P.C. (2012). Probability distribution of measured debris–flow velocity in Jiangjia Gully, Yunnan Province, China. Natural Hazards, 60(2), 689-701, DOI: 10.1007/s11069-011-0033-0.

30. Li Y., Yao S.F., Hu K.H., Chen X.Q., Cui P. (2003). Surges and deposits of debris flow in Jiangjia Gully. Journal of Mountain Science, 21(6), 712-715. (in Chinese).

31. Lin P.S., Lin J.Y., Chan K.F., Chou W.H. (2007). An experimental study of the impact force of debris flows on slit dams. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 647-658.

32. Liu J.J., Li Y., Su P.C., Cheng Z.L. (2008). Magnitude–frequency relations in debris flow. Environmental Geology, 2008, 55(6), 1345-1354, DOI: 10.1007/s00254-007-1083-1.

33. Liu K.F., Li H.C., Hsu Y.C. (2009). Debris flow hazard assessment with numerical simulation. Natural Hazards, 49(1), 137-161, DOI: 10.1007/s11069-008-9285-8.

34. Liu X., Yu Ch., Shi P., Fang W. (2012). Debris flow and landslide hazard mapping and risk analysis in China. Frontiers of Earth Science, 6(3), 306-313, DOI: 10.1007/s11707-012-0328-9.

35. Liu X., Yue Z.O., Tham L.G., Lee C.F. (2002). Empirical assessment of debris flow risk on a regional scale in Yunnan Province, Southwestern China. Environmental Management, 30(2), 249-264, DOI: 10.1007/s00267-001-2658-3.

36. Marchi L., Arattano M., Deganutti A.M. (2002). Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology, 46(1-2), 1-17, DOI: 10.1016/S0169-555X(01)00162-3.

37. O’Brien J.S., Julien P.Y., Fullerton W.T. (1993). Two–dimensional water flood and mudflow simulation //Journal of Hydraulic Engineering, 119(2), 244-259, DOI: 10.1061/(ASCE)0733-9429(1993)119:2(244)

38. Perov V.F. (2014). Debris flows phenomena. Terminological dictionary. 2nd ed. Moscow: Moscow University Publishing House. (in Russian).

39. Rickenmann D., Laigle D., McArdell B.W., Hubl J. (2006). Comparison of 2D debris–flow simulation models with field events. Computational Geosciences, 10(2), 241-264, DOI: 10.1007/s10596-005-9021-3.

40. Shieh C.L, Jan C.D, Tsai Y.F (1996). A numerical simulation of debris flow and its application. Natural Hazards, 13(1), 39-54, DOI: 10.1007/BF00156505.

41. Shu A.P., Fei X.J., Feng Y. (2007). A preliminary study on energy dissipating mechanism for viscous debris flow. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 131-140.

42. Stoffel M. (2010). Magnitude–frequency relationships of debris flows—A case study based on field surveys and tree–ring records. Geomorphology, 116(1), 67-76, DOI: 10.1016/j.geomorph.2009.10.009.

43. Tian B., Wang Y.Y. (2007). Experimental study on the thixotropy of viscous debris flows. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 111-120.

44. Tian L.Q. (1987). Geomorphology and debris flow of Jiangjia Gully. Journal of Mountain Science, 5(4), 203-212 (In Chinese).

45. Tian X., Su F., Guo X., Liu J., Li Y. (2020). Material sources supplying debris flows in Jiangjia Gully. Environmental Earth Sciences, 79(13), 318, DOI: 10.1007/s12665-020-09020-4.

46. van Steijn H. (1996). Debris–flow magnitude—frequency relationships for mountainous regions of Central and Northwest Europe. Geomorphology, 15(3-4), 259-273, DOI: 10.1016/0169-555X(95)00074-F.

47. Vinogradova T.A., Vinogradov A.Yu. (2017). The experimental debris flows in the Chemolgan river basin. Natural Hazards, 88(S1), S190-S198, DOI: 10.1007/s11069-017-2853-z.

48. VSN 03–76 (1976). «Instructions for determining the calculated characteristics of rain debris flows». Leningrad: Hydrometeoizdat (in Russian).

49. Wang D.J., Cui P., Su F.H., Zhu Y.Y. (2007). Sediment properties of hyperconcentrated flow and the potential for agricultural improvement of debris flow deposits – A case study on the Jiangjia Ravine, Yunnan Province, China. In: C.-L. Cheng & J.J. Major, eds., Proceeding Debris–flow hazards mitigation. Chengdu. Mechanics, Prediction, and Assessment. Rotterdam: Millpress Science Publishers, 725-734.

50. Wei F., Jiang Y., Zhao Y., Xu A., Gardner J.S. (2010). The distribution of debris flows and debris flow hazards in Southeast China. WIT Transactions on Engineering Sciences, 67, 137-147, DOI: 10.2495/DEB100121.

51. Yang R.W. (1997). Solid material supplied volume to debris flow in Jiangjia ravine, Yunnan province. Journal of Mountain Research, 15(4), 305-307.

52. Zhao L., Luo Y., Liu T.-Y., Luo Y.-J. (2013). Earthquake Focal Mechanisms in Yunnan and their Inference on the Regional Stress Field. Bulletin of the Seismological Society of America, 103(4), 2498-2507, DOI: 10.1785/0120120309.

53. Zhu J., Tang C. (1996). A study on the risk regionalization of debris flow hazard in Yunnan province. Chinese Journal of Geological Hazard and Control, 7(2), 86-93 (in Chinese).

54. Zhuang J.Q., Cui P., Ge Y. (2011). Debris flow annual frequency and sediment delivery variations compared to rainfall changes over the last 40 years (Jiangjia Gully, China). In: International Conference on Debris–Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings (Italian Journal of Engineering Geology and Environment – Book). Casa Editrice Università La Sapienza, 173-179, DOI: 10.4408/IJEGE.2011-03.B-021.

55. Zhuang J.Q., Cui P., Wang G., Chen X., Iqbal J., Guo X. (2015). Rainfall thresholds for the occurrence of debris flows in the Jiangjia Gully, Yunnan Province, China. Engineering Geology, 195, 335-346, DOI: 10.1016/j.enggeo.2015.06.006.


For citation:


Ding M., Shnyparkov A.L., Grebennikov P.B., Khismatullin T.I., Sokratov S.A. Formation Conditions And Debris Flow Regime In Jiangjia Ravine, Yunnan, China – Applicability Of Russian Methodology. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 0;. https://doi.org/10.24057/2071-9388-2020-156

Views: 24


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)