Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

OPTICAL PROPERTIES OF LAKE VENDYURSKOE

https://doi.org/10.15356/2071-9388_03v09_2016_05

Full Text:

Abstract

We conducted a field study on light conditions in a small boreal Karelian Lake Vendyurskoe over two years. Albedo of ice-covered lake varied from 0.9 to 0.1, and the euphotic zone depth exceeded 3.5 m during the melting stage. The Secchi disc depth changed from 2.5 m after ice-break to 3.7 m at the stage of early summer. The vertical distribution of the photosynthetically active solar radiation (PAR) attenuation coefficient for water Kw was characterized by high spatial (vertical) and temporal (seasonal and interannual) variability
which can be connected with the dynamics of plankton cells. The highest values of Kw  eached 2–2.8 m–1 in the upper 0.5 m layer of a water column, and decreased to 0.5–1.5 m–1 with increasing depth. The highest values of Kw were marked in the end of ice-covered period.

About the Authors

Roman G. Zdorovennov
Northern Water Problems Institute
Russian Federation


Galina G. Gavrilenko
Northern Water Problems Institute
Russian Federation


Galina E. Zdorovennova
Northern Water Problems Institute
Russian Federation


Nikolay I. Palshin
Northern Water Problems Institute
Russian Federation


Tatyana V. Efremova
Northern Water Problems Institute
Russian Federation


Sergey D. Golosov
Northern Water Problems Institute
Russian Federation


Arkady Yu. Terzhevik
Northern Water Problems Institute, Institute of Limnology, Russian Academy of Sciences
Russian Federation


References

1. Arst H., Erm A., Leppäranta M. & Reinart A. (2006) Radiative characteristics of ice-covered fresh- and brackish-water bodies. Proc. of the Estonian Academy of Sciences, Geology. 55 (1): 3–23.

2. Arst H., Erm A., Herlevi A., Kutser T., Leppäranta M., Reinart A. & Virta J. (2008) Optical properties of boreal lake water in Finland and Estonia. Boreal Env. Res.13: 133–158.

3. Belzile C., Vincent W.F., Gibson J.A.E. & Van Hove P. (2001) Bio-optical characteristics of the snow, ice, and water column of a perennially ice-covered lake in the High Arctic. Can. J. Fish. Aquat. Sci. 58: 2405–2418.

4. Bolsenga S.J. &Vanderploeg H.A. (1992) Estimating photosynthetically available radiation into open and ice-covered freshwater lakes from surface characteristics; a high transmittance case study. Hydrobiologia. 243/244: 95–104.

5. Chekhin L.P. (1987) Svetovoi rezhim vodoemov [Light Regime of Water Bodies]. Petrozavodsk: Karel’skii filial AN SSSR. 130 p. [in Russian].

6. Fritsen C.H. & Priscu J.C. (1999) Seasonal change in the optical properties of the permanent ice cover on Lake Bonney, Antarctica: consequences for lake productivity and phytoplankton dynamics. Limnol. Oceanogr. 44: 447–454.

7. Henderson-Sellers B. (1984) Engineering Limnology. Boston: Pitman Advanced Publishing Program.

8. Jakkila J., Leppäranta M., Kawamura T., Shirasawa K. & Salonen K. (2009) Radiation transfer and heat budget during the melting season in Lake Pääjärvi. Aquatic Ecology. 43 (3): 681–692.

9. Jerlov N.G. (1976) Marine optic. Elsevier Oceanography Series 5, Elsevier, Amsterdam–Oxford– New-York.

10. Jewson D.H., Granin N.G., Zhdanov A.A. & Gnatovsky R.Yu. (2009) Effect of snow depth on under-ice irradiance and growth of Aulacoseira baicalensis in Lake Baikal. Aquatic Ecology. 43(3): 673–679.

11. Kirillin G., Leppäranta M., Terzhevik A., Granin N., Bernhardt J., Engelhardt C., Efremova T., Palshin N., Sherstyankin P., Zdorovennova G. & Zdorovennov R. (2012) Physics of seasonally ice-covered lakes: a review. Aquatic Sciences. 74 (4): 659–682. Zdorovennov R.G., Gavrilenko G.G. et al. OPTICAL PROPERTIES OF LAKE VENDYURSKOE

12. Lei R., Leppäranta M., Erm A., Jaatinen E. & Pärn O. (2011) Field investigations of apparent optical properties of ice cover in Finnish and Estonian lakes in winter 2009. Estonian Journal of Earth Science. 60 (1): 50–64.

13. Leppäranta M., Reinart A., Erm A., Arst H., Hussainov M. & Sipelgas L. (2003) Investigation of Ice and Water Properties and Under-ice Light Fields in Fresh and Brackish Water Bodies. Nordic Hydrology. 34 (3): 245–266.

14. Leppäranta M., Terzhevik A. & Shirasawa K. (2010) Solar radiation and ice melting in Lake Vendyurskoe, Russian Karelia. Hydrology Research. 41 (1): 50–62.

15. Malm J., Terzhevik A., Bengtsson L., Boyarinov P., Glinsky A., Palshin N. & Petrov M. (1997) Temperature and Hydrodynamics in Lake Vendurskoe during Winter 1995/1996. Department of Water Resources Engineering, Institute of Technology. University of Lund, № .3213. 203 p.

16. Matthews P.C. & Heaney S.A. (1987) Solar heating and its influence on mixing in icecovered lakes. Freshwater Biology. 18: 135–149.

17. Mironov D.V. & Terzhevik A.Y. (2000) Spring convection in ice-covered freshwater lakes. Izvestiya Atmospheric and Oceanic Physics. 36 (5): 627–634.

18. Mironov D., Terzhevik A., Kirillin G., Jonas T., Malm J. & Farmer D. (2002) Radiatively-driven convection in ice-covered lakes: observations, scaling and a mixed-layer model. J. Geophys. Res. 107 (C4): 7-1-7-16.

19. Mironov D., Heise E., Kourzeneva E., Ritter B., Schneider N. & Terzhevik A. (2010) Implementation of the lake parameterization scheme FLake into the numerical weather prediction model COSMO. Boreal Env. Res. 15: 218–230.

20. Petrov M.P., Terzhevik A.Y., Palshin N.I., Zdorovennov R.E. & Zdorovennova G.E. (2005) Absorption of Solar Radiation by Snow-and-Ice Cover of Lakes. Water Resources. 32 (5): 496–504.

21. Reynolds C.S. (2006) The Ecology of Phytoplankton. Cambridge University Press.

22. Tulonen T., Kankaala P., Ojala A. & Arvola L. (1994) Factors controlling production of phytoplankton and bacteria under ice in a humic, boreal lake. J. of Plankton Res. 16 (10):1411–1432.

23. Twiss M.R., Smith D.E., Cafferty E.M. & Carrick H.J. (2012) Diatoms abound in ice-covered Lake Erie: An investigation of offshore winter limnology in Lake Erie over the period 2007 to 2010. J. Great Lakes Res. 38: 18–30.

24. Vanderploeg H.A., Bolsenga S.J., Fahnenstiel G.L., Liebig J.R. & Gardner W.S. (1992) Plankton ecology in an ice-covered bay of Lake Michigan: utilization of a winter phytoplankton bloom by reproducing copepods. Hydrobiologia. 243–244 (1): 175–183.

25. Williams D.T., Drummond G.R., Ford D.E. & Robey D.L. (1981) Determination of light extinction coefficients in lakes and reservoirs. Proc. ASCE Symp. On Surface Water Impoundements. Minneapolis, Minnesota. 2: 1329–1335.

26. Zaneveld J.R.V., Kitchen J.C. & Pak H. (1981) The influence of optical water type on the heating rate of a constant depth mixed layer. Journal of Geophysical Research. 86 (C7): 6426–6428.

27. Zdorovennov R., Palshin N., Zdorovennova G., Efremova T. & Terzhevik A. (2013) Interannual variability of ice and snow cover of a small shallow lake. Estonian Journal of Earth Science. 61 (1): 26–32.

28. Zdorovennova G., Zdorovennov R., Palshin N. & Terzhevik A. (2013) Optical properties of the ice cover on Vendyurskoe lake, Russian Karelia (1995–2012). Annals of Glaciology. 54 (62): 121–124.


For citation:


Zdorovennov R.G., Gavrilenko G.G., Zdorovennova G.E., Palshin N.I., Efremova T.V., Golosov S.D., Terzhevik A.Y. OPTICAL PROPERTIES OF LAKE VENDYURSKOE. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2016;9(3):74-87. https://doi.org/10.15356/2071-9388_03v09_2016_05

Views: 221


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)