Environmental Controls Of Photosynthetic Parameters In Four Dominant Boreal Tree Species: Contrasting Responses Of Deciduous Angiosperms And Evergreen Gymnosperms
https://doi.org/10.24057/2071-9388-2025-4190
Abstract
Boreal forests play a crucial role in maintaining the global ecological balance, acting as significant carbon sinks and mitigating the effects of climate change. This study examined how temperature affects photosynthesis in four boreal tree species – Pinus sylvestris, Betula pendula, Populus tremula, and Alnus incana – growing in a clear-cut of mid-taiga bilberry-type pine forest in southern Karelia, Russia. The Farquhar biochemical model was used to analyze key photosynthesis parameters, such as the maximum carboxylation rate by Rubisco (Vсmax), the maximum photosynthetic electron transport rate (Jmax), and the triose phosphate utilization (TPU) rate, under different leaf temperatures ranging from 20 to 35°C and light conditions. The results revealed significant interspecific differences in photosynthetic responses. At a leaf surface temperature of 25°C, the lowest Vcmax25, Jmax25, and TPU25 values were obtained for the 1-year-old needles of P. sylvestris (38.8, 70.7, and 5.5 μmol m-2 s-1), whereas the values were 1.5- to 2.4-fold higher for the leaves of B. pendula (93.5, 172.1, and 12.7 μmol m-2 s-1), A. incana (86.1, 155.1, and 11.4 μmol m-2 s-1), and P. tremula (58.6, 122, and 9.3 μmol m-2 s-1). Meanwhile, P. sylvestris and B. pendula had a broader optimal temperature range for Vcmax and Jmax (20–35°C), whereas A. incana and P. tremula had a narrower range (20–30°C), experiencing a decline at 35°C. In addition to having different levels of resistance to extreme temperatures, deciduous species also differed in their responsiveness to CO2 enrichment. This could lead to shifts in the composition of boreal forest species under changing climate conditions. P. sylvestris demonstrated greater stability at low light levels and a strong response to elevated CO2, indicating its high adaptability to future climate change. These results highlight the importance of considering species characteristics when predicting the carbon balance of boreal forests. They can be used to model the resilience of forest ecosystems under climate change and to plan further investigations, including studies of mature trees and the effects of additional stress factors, such as drought.
Keywords
About the Authors
Vladislava B. PridachaRussian Federation
Pushkinskaya St.,11, Petrozavodsk, 185910
Alexander V. Olchev
Russian Federation
GSP-1, Leninskie Gory, Moscow, 119991
References
1. Afonin A.N., Greene S.L., Dzyubenko N.I., Frolov A.N. (eds.). (2008). Interactive agricultural ecological atlas of Russia and neighboring countries. Economic plants and their diseases, pests and weeds [Online]. Available at: https://agroatlas.ru.
2. Baillie A.L., Fleming A.J. (2020). The developmental relationship between stomata and mesophyll airspace. New Phytol, 225(3), 1120– 1126. DOI: 10.1111/nph.16341
3. Bernacchi C.J., Bagley J.E., Serbin S.P., Ruiz‐Vera U.M., Rosenthal D.M., Vanloocke A. (2013). Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ, 36(9), 1641–1657. DOI: 10.1111/pce.12118
4. Bonan G.B. (2008). Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 320, 1444–1449. DOI: 10.1126/science.1155121
5. Busch F.A. (2024). Photosynthetic gas exchange in land plants at the leaf level. In: Covshoff, S. (eds) Photosynthesis. Methods in molecular biology. V. 2790. Humana, New York, NY. DOI: 10.1007/978-1-0716-3790-6_3
6. Busch F.A., Ainsworth E.A., Amtmann A., Cavanagh A.P., Driever S.M., Ferguson J.N., Kromdijk J., Lawson T., Leakey A.D., Matthews J.S., Meacham-Hensold K.,Vath R.L.,Vialet-Chabrand S., Walker B.J.,Papanatsiou M. (2024). A guide to photosynthetic gas exchange measurements: Fundamental principles, best practice and potential pitfalls. Plant Cell Environ, 47, 3344–3364. DOI: 10.1111/pce.14815
7. Carriquí M., Nadal M., Clemente-Moreno M.J., Gago J., Miedes E., Flexas J. (2020). Cell wall composition strongly influences mesophyll conductance in gymnosperms. Plant J, 103, 1372–1385. DOI: 10.1111/tpj.14806
8. de Souza V.F., Rasulov B., Talts E., Morfopoulos C., Albuquerque P.M., Junior S.D., Niinemets U., Goncales J.F. (2024). Thermal sensitivity determines the effect of high CO2 on carbon uptake in Populus tremula and Inga edulis. Theor Exp Plant Physiol, 36, 199–213. DOI: 10.1007/s40626-024-00312-9
9. Drake J.E., Tjoelker M.G., Vårhammar A., Medlyn B.E., Reich P.B., Leigh A., Pfautsch S., Blackman C.J., López R., Aspinwall M.J., Crous K.Y., Duursma R.A., Kumarathunge D., De Kauwe M.G., Jiang M., Nicotra A.B., Tissue D.T., Choat B., Atkin O.K., Barton C.V. (2018).Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob Change Biol, 24, 2390–2402. DOI: 10.1111/gcb.14037
10. Dusenge M.E, Madhavji S., Way D.A. (2020). Contrasting acclimation responses to elevated CO2 and warming between an evergreen and a deciduous boreal conifer. Glob Change Biol, 26, 3639–3657. DOI: 10.1111/gcb.15084
11. Farquhar G.D., von Caemmerer S., Berry J.A. (1980). A biochemical model of photosynthetic CO2 assimilation in leaves of C3 plants. Planta, 149, 78–90.
12. Flexas J., Carriquí M., Coopman R.E., Gago J., Galmés J., Martorell S., Morales F., Diaz-Espejo A. (2014). Stomatal and mesophyll conductances to CO2 in different plant groups: underrated factors for predicting leaf photosynthesis responses to climate change? Plant Sci, 226, 41–48. DOI: 10.1016/j.plantsci.2014.06.011
13. Gagne M.A., Smith D.D., McCulloh K.A. (2020). Limited physiological acclimation to recurrent heatwaves in two boreal tree species. Tree Physiol, 40(12), 1680–1696. DOI: 10.1093/treephys/tpaa102
14. Galmés J., Kapralov M.V., Copolovici L.O., Hermida-Carrera C., Niinemets Ü. (2015). Temperature responses of the Rubisco maximum carboxylase activity across domains of life: phylogenetic signals, trade-offs, and importance for carbon gain. Photosynth Res, 123, 183–201. DOI: 10.1007/s11120-014-0067-8
15. Groisman P., Shugart H., Kicklighter D. et al. (2017). Northern Eurasia Future Initiative (NEFI): facing the challenges and pathways of global change in the twenty-first century. Prog Earth Planet Sci, 41. DOI: 10.1186/s40645-017-0154-5
16. Gushchina D., Tarasova M., Satosina E., Zheleznova I., Emelianova E., Gibadullin R., Osipov A., Olchev A. (2023). The response of daily carbon dioxide and water vapor fluxes to temperature and precipitation extremes in temperate and boreal forests. Climate, 11(10), 206. DOI: 10.3390/cli11100206
17. Hikosaka K., Niinemets Ü., Anten N.P. (eds). (2016). Canopy photosynthesis: from basics to applications. Advances in photosynthesis and respiration.Vol. 42. Springer Dordrecht, 428 р. DOI: 10.1007/978-94-017-7291-4
18. Hüve K., Bichele I., Kaldmäe H., Rasulov B., Valladares F., Niinemets Ü. (2019). Responses of aspen leaves to heatflecks: both damaging and non-damaging rapid temperature excursions reduce photosynthesis. Plants, 8(6), 145. DOI: 10.3390/plants8060145
19. IPCC: Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. (2023). IPCC, Geneva, Switzerland, 34 p. DOI: 10.59327/IPCC/AR69789291691647.001
20. Juárez-López F.J., Escudero A., Mediavilla S. (2008). Ontogenetic changes in stomatal and biochemical limitations to photosynthesis of two co-occurring Mediterranean oaks differing in leaf life span. Tree Physiol, 28, 367–374. DOI: 10.1093/treephys/28.3.367
21. Kaipiainen E.L. (2009). Parameters of photosynthesis light curve in Salix dasyclados and their changes during the growth season. Russ J Plant Physiol, 56, 445–453. DOI: 10.1134/S1021443709040025.
22. Klein T. (2014). The variability of stomatal sensitivity to leaf water potential across tree species indicates a continuum between isohydric and anisohydric behaviours. Funct Ecol, 28, 1313–1320. DOI: 10.1111/1365-2435.12289
23. Knauer J., Cuntz M., Evans J.R., Niinemets Ü., Tosens T., Veromann-Jürgenson L.-L., Werner C., Zaehle S. (2022). Contrasting anatomical and biochemical controls on mesophyll conductance across plant functional types. New Phytol, 236, 357–368. DOI: 10.1111/nph.18363
24. Korzukhin M.D., Tselnicker Y.L. (2009). Analysis of the distribution and net primary production of four forest tree species in Russia using an ecophysiological model. In: Problems of ecological monitoring and ecosystem modeling, 22, 92–123.
25. Kurepin L.V., Stangl Z.R., Ivanov A.G., Bui V., Mema M., Hüner N.P., Öquist G., Way D., Hurry V. (2018). Contrasting acclimation abilities of two dominant boreal conifers to elevated CO2 and temperature. Plant Cell Environ, 41, 1331–1345. DOI: 10.1111/pce.13158
26. Laisk A., Nedbal L., Govindjee G. (eds). (2009). Photosynthesis in silico: understanding complexity from molecules to ecosystems. Advances in photosynthesis and respiration.Vol. 29. Springer Dordrecht, 503р. DOI: 10.1007/978-1-4020-9237-4
27. Lin H., Chen Y., Zhang H., Fu P., Fan Z. (2017). Stronger cooling effects of transpiration and leaf physical traits of plants from a hot dry habitat than from a hot wet habitat. Funct Ecol, 31, 2202–2211. DOI: 10.1111/1365-2435.12923
28. Lin Y.-S., Medlyn B.E., Ellsworth D.S. (2012). Temperature responses of leaf net photosynthesis: the role of component processes. Tree Physiol, 32(2), 219–231. DOI: 10.1093/treephys/tpr141
29. Lin Y.-S., Medlyn В.Е., Kauwe M.G., Ellsworth D.S. (2013). Biochemical photosynthetic responses to temperature: how do interspecific differences compare with seasonal shifts? Tree Physiol, 33(8), 793–806. DOI: 10.1093/treephys/tpt047
30. Liu Q., Peng C., Schneider R., Cyr D., McDowell N.G., Kneeshaw D. (2023). Drought-induced increase in tree mortality and corresponding decrease in the carbon sink capacity of Canada’s boreal forests from 1970 to 2020. Glob Change Biol, 29, 2274–2285. DOI: 10.1111/gcb.16599
31. Ma Z., Behling S., Ford E.D. (2014). The contribution of dynamic changes in photosynthesis to shade tolerance of two conifer species. Tree Physiol, 34(7), 730–743. DOI: 10.1093/treephys/tpu054
32. Mäenpää M., Riikonen J., Kontunen-Soppela S., Rousi M., Oksanen E. (2011). Vertical profiles reveal impact of ozone and temperature on carbon assimilation of Betula pendula and Populus tremula. Tree Physiol, 31, 819–830. DOI: 10.1093/treephys/tpr075
33. Márquez D.A., Busch F.A. (2024). The interplay of short-term mesophyll and stomatal conductance responses under variable environmental conditions. Plant Cell Environ, 47, 3393–3410. DOI: 10.1111/pce.14880
34. Martínez-García E., Nilsson M.B., Laudon H., Lundmark T., Fransson J.E.S., Wallerman J., Peichl M. (2024). Drought response of the boreal forest carbon sink is driven by understorey–tree composition. Nat Geosci, 17, 197–204. DOI: 10.1038/s41561-024-01374-9
35. Medlyn B.E., Dreyer E., Ellsworth D., Forstreuter M., Harley P.C., Kirschbaum M. U., Le Roux X., Montpied P., Strassemeyer J., Walcroft A., Wang K., Loustau D. (2002). Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant Cell Environ, 25, 1167–1179. DOI: 10.1046/j.1365-3040.2002.00891.x
36. Meinzer F.C., Woodruff D.R., Marias D.E., Smith D.D., McCulloh K.A., Howard A.R., Magedman A.L. (2016). Mapping ‘hydroscapes’ along the iso- to anisohydric continuum of stomatal regulation of plant water status. Ecol Lett, 19, 1343–1352. DOI: 10.1111/ele.12670
37. Miyazawa S.I., Tobita H., Ujino-Ihara T., Suzuki Y. (2020). Oxygen response of leaf CO2 compensation points used to determine Rubisco specificity factors of gymnosperm species. J Plant Res, 133, 205–215. DOI: 10.1007/s10265-020-01169-0
38. Mndela M., Tjelele J.T., Madakadze I.C., Mangwana M., Samuels I.M., Muller F., Pule H.T. (2022). A global meta-analysis of woody plant responses to elevated CO2: implications on biomass, growth, leaf N content, photosynthesis and water relations. Ecological Processes, 11, 52–73. DOI: 10.1186/s13717-022-00397-7
39. Mokhov I.I. (2022). Climate change: causes, risks, consequences, and problems of adaptation and regulation. Herald Russ Academy Sci, 92(1), 3–14. DOI: 10.31857/S0869587322010066.
40. Molchanov A.G. (2007). CO2 balance in ecosystems of pine and oak forests in different forest vegetation zones. Tula, 284 p.
41. Nadal M., Carriquí M., Flexas J. (2021). Mesophyll conductance to CO2 diffusion in a climate change scenario: effects of elevated CO2, temperature and water stress. In: Becklin K.M., Ward J.K., Way D.A. (eds) Photosynthesis, respiration, and climate change. Advances in photosynthesis and respiration, 48. Springer, Cham. DOI: 10.1007/978-3-030-64926-5_3
42. Nazarova L.E. (2021). Climatic conditions in the Republic of Karelia. In: Current conditions of water basins of the North. Petrozavodsk, 7–16 (In Russian).
43. Niinemets Ü., Flexas J., Peñuelas J. (2011). Evergreens favored by higher responsiveness to increased CO2. Trends Ecol Evol, 26(3), 136– 142. DOI: 10.1016/j.tree.2010.12.012
44. Norby R.J., DeLucia E.H., Gielen B., et al. (2005) Forest response to elevated CO2 is conserved across a broad range of productivity. Proc Natl Acad Sci USA, 102 (50), 18052–18056. DOI: 10.1073/pnas.0509478102
45. Olchev A.V., Deshcherevskaya O.A., Kurbatova Y.A., Molchanov A.G., Novenko E.Y., Pridacha V.B., Sazonova T.A. (2013). CO2 and H2O exchange in the forest ecosystems of southern taiga under climate change. Doklady Biol Sci, 450(1), 173−176. DOI: 10.1134/S0012496613030216
46. Olchev A.V., Gulev S.K. (2024). Carbon flux measurement supersites of the Russian Federation: objectives, methodology, prospects. Izv Atmos Ocean Phys, 60 (Suppl 3), S428–S434. DOI: 10.1134/S0001433824700841
47. Olchev A.V. (2025). Estimation of carbon dioxide and methane emissions and absorption by land and ocean surfaces in the 21st century. Izv Atmos Ocean Phys, 61 (Suppl 1), S74–S100. DOI: 10.1134/S0001433825701166
48. Oleksyn J., Modrzynski J., Tjoelker M.G., Zytkowiak R., Reich P.B., Karolewski P. (1998). Growth and physiology of Picea abies populations from elevational transects: common garden evidence for altitudinal ecotypes and cold adaptation. Funct Ecol, 12, 573–590.
49. Oleksyn J., Żytkowiak R., Reich P.B., Tjoelker M.G., Karolewski P. (2000). Ontogenetic patterns of leaf CO2 exchange, morphology and chemistry in Betula pendula trees. Trees, 14, 271–281. DOI: 10.1007/PL00009768
50. Onoda Y., Hikosaka K., Hirose T. (2005). The balance between RuBP carboxylation and RuBP regeneration: a mechanism underlying the interspecific variation in acclimation of photosynthesis to seasonal change in temperature. Funct Plant Biol, 32, 903–910. DOI: 10.1071/FP05024
51. Ow L.F., Griffin K.L., Whitehead D., Walcroft A.S., Turnbull M.H. (2008). Thermal acclimation of leaf respiration but not photosynthesis in Populus deltoides×nigra. New Phytol, 178, 123–134. DOI: 10.1111/j.1469-8137.2007.02357.x
52. Peel M.C., Finlayson B.L., McMahon T.A. (2007). Updated world map of Köppen-Geiger climate classification. Hydrol Earth Syst Sci, 11, 1633–1644. DOI: 10.5194/hess-11-1633-2007
53. Pridacha V.B., Makhmudova L.Sh., Semin D.E., Olchev A.V. (2022). Photosynthetic parameters of woody plant species in the foothills of northern Caucasian broadleaved forests. Grozny Natural Science Bulletin, 4(30), 105–112 (in Russian with English summary). DOI: 10.25744/ genb.2022.74.70.009
54. Pridacha V.B., Sazonova T.A., Novichonok E.V., Semin D.E., TkachenkoYu.N., Pekkoev A.N., Timofeeva V.V., Bakhmet O.N., Olchev A.V. (2021). Clear-cutting impacts nutrient, carbon and water exchange parameters in woody plants in an east Fennoscandian pine forest. Plant Soil, 466, 317–336. DOI: 10.1007/s11104-021-05058-w
55. Pridacha V.B., Semin D.E. (2024). Clear-cutting effects on components of the carbon balance in a bilberry-type pine forest in southern Karelia. Ecosystem Transformation, 7(3), 64–83. DOI: 10.23859/estr-230505
56. Pridacha V.B., Tarelkina T.V., Neronova Ya.А.,Tumanik N.V. (2023). Significance of coordination between stem xylem traits and leaf gas exchange parameters during adaptation formation in some boreal species of Karelia. Botanicheskii Zhurnal, 108(7), 690–708. DOI: 10.31857/S000681362306008X
57. Reich P.B., Sendall K.M., Stefanski A., Rich R.L., Hobbie S.E., Montgomery R.A. (2018). Effects of climate warming on photosynthesis in boreal tree species depend on soil moisture. Nature, 562, 263–267. DOI: 10.1038/s41586-018-0582-4
58. Riikonen J., Mäenpää M., Alavillamo M., Silfver T., Oksanen E. (2009). Interactive effect of elevated temperature and O3 on antioxidant capacity and gas exchange in Betula pendula saplings. Planta, 230, 419–427. DOI: 10.1007/s00425-009-0957-8
59. Rytter L., Rytter R.-M. (2016). Growth and carbon capture of grey alder (Alnus incana (L.) Moench.) under north European conditions – estimates based on reported research. Forest Ecol Manag, 2016, 373, 56–65. DOI: 10.1016/j.foreco.2016.04.034
60. Sage R.F., Kubien D.S. (2007). The temperature response of C3 and C4 photosynthesis. Plant Cell Environ, 30, 1086–1106. DOI: 10.1111/j.13653040.2007.01682.x
61. Scafaro A.P., Posch B.C., Evans J.R., Farquhar G.D., Atkin O.K. (2023). Rubisco deactivation and chloroplast electron transport rates co-limit photosynthesis above optimal leaf temperature in terrestrial plants. Nat Commun, 14, 2820. DOI: 10.1038/s41467-023-38496-4
62. Schmiege S.C., Griffin K.L., Boelman N.T., Vierling L.A., Bruner S.G., Min E., Maguire A.J., Jensen J., Eitel J.U.H. (2023) Vertical gradients in photosynthetic physiology diverge at the latitudinal range extremes of white spruce. Plant Cell Environ, 46, 45–63. DOI: 10.1111/pce.14448
63. Sellin A., Alber M., Jasińska A.K., Rosenvald K. (2022). Adjustment of leaf anatomical and hydraulic traits across vertical canopy profiles of young broadleaved forest stands. Trees, 36, 67–80. DOI: 10.1007/s00468-021-02181-0
64. Sellin A., Taneda H., Alber M. (2019). Leaf structural and hydraulic adjustment with respect to air humidity and canopy position in silver birch (Betula pendula). J Plant Res, 132, 369–381. DOI: 10.1007/s10265-019-01106-w
65. Sharkey T.D. (1985). Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. The Botanical Review, 51, 53–105. DOI: 10.1007/BF02861058
66. Sharkey T.D. (2016). What gas exchange data can tell us about photosynthesis. Plant Cell Environ, 39, 1161–1163. DOI: 10.1111/pce.12641
67. Sharkey T.D. (2024). The end game(s) of photosynthetic carbon metabolism. Plant Physiol, 195(1), 67–78. DOI: 10.1093/plphys/kiad601
68. Sharkey T.D., Bernacchi C.J., Farquhar G.D., Singsaas E.L. (2007). Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ, 30, 1035–1040. DOI: 10.1111/j.1365-3040.2007.01710.x.
69. Shiklomanov A.N., Cowdery E.M., Bahn M., Byun C., Jansen S., Kramer K., Minden V., Niinemets U., Onoda Y., Soudzilovskaia N.A., Dietze M.S. (2020). Does the leaf economic spectrum hold within plant functional types? A Bayesian multivariate trait meta‐analysis. Ecological application, 30(3), 1–15. DOI: 10.1002/eap.2064
70. Stirbet A., Guo Y., Lazár D., Govindjee G. (2024). From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. Photosynth Res, 161, 21–49. DOI: 10.1007/s11120-024-01083-9
71. Sukhova E.M., Vodeneev V.A., Sukhov V.S. (2021). Mathematical modeling of photosynthesis and analysis of plant productivity. Biochem Moscow Suppl Ser A, 15, 52–72. DOI: 10.1134/S1990747821010062
72. Suvorova G.G., Popova E.V. (2015). Photosynthetic productivity of coniferous stands of the Irkutsk region. Novosibirsk, Geo, 95 p. (In Russian)
73. Togashi H.F., Prentice I.C., Atkin O.K., Macfarlane C., Prober S.M., Bloomfield K.J., Evans B.J. (2018). Thermal acclimation of leaf photosynthetic traits in an evergreen woodland, consistent with the coordination hypothesis. Biogeosciences, 15(11), 3461–3474. DOI: 10.5194/bg-15-34612018
74. TselnikerYu.L.(1982). A simplified method for determination of needle surface in pine and spruce trees. Russ J Forest Sci, 4, 85–88. (In Russian)
75. Tselniker Yu.L., Malkina I.S., Kovalev A.G., Chmora S.N, Mamaev V.V., Molchanov A.G. (1993). The growth and CO2-exchange in forest trees. Nauka, Moskva, 256 p. (In Russian)
76. Vasfilov S.P. (2016). The effect of photosynthesis parameters on leaf lifespan. Biol Bull Rev, 6(1), 96–112. DOI: 10.1134/S2079086416010084
77. Veromann-Jürgenson L.-L., Tosens T., Laanisto L., Niinemets U. (2017). Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! J Experimental Botany, 68(7), 1639–1653. DOI: 10.1093/jxb/erx045
78. Vogel C.S., Curtis P.S. (1995). Leaf gas exchange and nitrogen dynamics of N2-fixing, field-grown Alnus glutinosa under elevated atmospheric CO2. Glob Change Biol, 1, 55–61. DOI: 10.1111/j.1365-2486.1995.tb00006.x
79. Von Caemmerer S. (2000). Biochemical models of leaf photosynthesis. CSIRO publishing, 165 р. DOI: 10.1071/9780643103405
80. Wullschleger S.D. (1993). Biochemical limitations to carbon assimilation in C3-plants – a retrospective analysis of the A/Ci curves from 109 species. J Experimental Botany, 44(5), 907–920.
Review
For citations:
Pridacha V.B., Olchev A.V. Environmental Controls Of Photosynthetic Parameters In Four Dominant Boreal Tree Species: Contrasting Responses Of Deciduous Angiosperms And Evergreen Gymnosperms. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(4):92-102. https://doi.org/10.24057/2071-9388-2025-4190
JATS XML
































