Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES

https://doi.org/10.24057/2071-9388-2013-6-1-60-70

Full Text:

Abstract

We applied geothermal method for paleoclimatic reconstruction of the ground surface temperature history during the Little Ice Age and contemporary warming. We analyzed 83 borehole temperature profiles and estimated warming amplitudes and warming start dates after the Little Ice Age. The studied boreholes are situated in the Urals and Eastern Europe (Finland, Ukraine, and Belarus). Our investigation shows high degree of spatial variability of climatic changes in 18–19 centuries. Spatial distribution of amplitudes of paleoclimatic changes and warming start date testifies that warming following after the Little Ice Age was in progress in several steps and for different regions it started at different times.

About the Authors

Anastasia Gornostayeva
Institute of Geophysics, Ural Branch, Russian Academy of Sciences; 100 Amundsen Str., Ekaterinburg, Russia
Russian Federation


Dmitry Demezhko
Institute of Geophysics, Ural Branch, Russian Academy of Sciences; 100 Amundsen Str., Ekat
Russian Federation


References

1. Beltrami H., Gosselin C., and Mareschal J.C. (2003) Ground surface temperatures

2. in Canada: Spatial and temporal variability. Geophys. Res. Lett., 30 (10), 1499,

3. doi:10.1029/2003L017144.

4. Beltrami H., and Mareshal J.-C. (1991) Recent warming in eastern Canada inferred from

5. geothermal measurements. Geophys. Res. Lett., vol. 18, N4:605–608.

6. Carslaw H.S., Jaeger J.C. (1959) Conduction of Heat in Solids. 2nd edn. Oxford Univ. Press,

7. New York, 510 pp.

8. Cermak V., Bodri L., Safanda J. (1992) Underground temperature fields and changing climate:

9. evidence from Cuba. Paleogeogr. Paleoclim. Paleoecol., 97, p. 325–327.

10. Demezhko D.Yu., and Golovanova I.V. (2007) Climatic changes in the Urals over the past

11. millennium – an analysis of geothermal and meteorological data. Climate of the Past, 3,

12. p. 237–242 (http://222.clim-past.net/3/237/2007/cp-3-237-2007.html).

13. Demezhko D.Yu., and Shchapov V.A. (2001) 80,000 years ground surface temperature history

14. inferred from the temperature-depth log measured in the superdeep hole SG-4 (the

15. Urals, Russia). Glob. and Planet. Change, 29, p. 219–230.

16. Huang, S. and Pollack, H.N. (1998) Global Borehole Temperature Database for Climate

17. Reconstruction. IGBP PAGES/World Data Center-A for Paleoclimatology Data Contribution

18. Series #1998-044. NOAA/NGDC Paleoclimatology Program, Boulder CO, USA. (http://

19. www.geo.lsa.umich.edu/climate/).

20. Kotlovanova A.A. (2011) Influence of thermal effusivity on propagation of temperature

21. waves in subsurface. XII Ural youth scientific school on geophysics: Collection of scientific

22. papers. – Perm, UB RAS, p. 119–122. (in Russian).

23. Lachenbruch A.H., and Marshall B.V. (1986) Changing climate: geothermal evidences from

24. permafrost in the Alaskan Arctic. Science, 234, p. 689–696.

25. Ljungqvist F. C., Krusic P. J., Brattstrom G., and H. S. Sundqvist (2012) Northern Hemisphere

26. temperature patterns in the last 12 centuries // Clim. Past, 8, p. 227–249.

27. Majorowicz J. (2010) The Climate of Europe in Recent Centuries in the Context of the Climate

28. of Mid to High Latitude Northern Hemisphere from Borehole Temperature Logs / In: Przybylak,

29. R.; Majorowicz, J.; Brázdil, R.; Kejan, M. (Eds.). The Polish Climate in the European Context:

30. An Historical Overview. Springer Verlag, 1, p. 103–126, DOI: 10.1007/978-90-481-3167-9_4.


For citation:


Gornostayeva A., Demezhko D. RECOVERY FROM THE LITTLE ICE AGE: GEOTHERMAL EVIDENCES. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2013;6(1):29-36. https://doi.org/10.24057/2071-9388-2013-6-1-60-70

Views: 178


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)