Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

DETECTION Of ATMOSPHERIC POLLUTION SOURCES BY USING CROSS-PLUME SCANNING METHOD AND MOBILE RAILwAY LABORATORY

https://doi.org/10.24057/2071-9388-2018-11-3-71-82

Full Text:

Abstract

In this study the power of the sulfur dioxide emissions from the Mid-Urals copper-smelting enterprise (MUCE) was estimated by using plume cross-scanning. The combination of the observational data obtained by the TROICA experiments and information obtained by satellite photos of the Earth’s surface together with the ISCST3 dispersion model is promising for studies of the short-range atmospheric transport of chemically inactive pollutants. The results of ISCT3 model simulations indicate that the SO2 emissions in terms of sulfur make up about 3–4% of the plant sulfuric acid production. Also the cross validation between ISCST3 and NOAA HYSPLIT dispersion models was carried out. The emission rate obtained at the NOAA HYSPLIT model simulation is 1.5 times higher than the emission rate calculated at the ISCST3 simulation. It was emphasized, that the using of mobile platforms on electric traction has advantages in studying the environmental situation in comparison with the measurement system, constructed on the stationary Environmental Protection Stations. The cross-plume scanning method to a lesser degree depends on the wind rose, the features of the landscape and a relative location of emission sources and sensors.

About the Authors

A. N. Safronov
Obukhov Institute of Atmospheric Physics RAS.
Russian Federation
Scientific researcher in the Laboratory of Atmospheric Gaseous Species (LAGS).  PhD Physical and Mathematical SciencesMoscow.


N. F. Elansky
Obukhov Institute of Atmospheric Physics RAS.
Russian Federation

Doctor of Physical and Mathematical Sciences.

Moscow.



A. I. Skorokhod
Obukhov Institute of Atmospheric Physics RAS.
Russian Federation

Head of Laboratory of Atmospheric Gaseous Species (LAGS).

Moscow.



References

1. Berezina E.V., Elansky N. F., Moiseenko K.B., Belikov I.B., Shumsky R.A., Safronov A.N. and Brenninkmeijer C.A.M. (2013). Estimation of nocturnal 222Rn soil fluxes over Russia from TROICA measurements. Atmos. Chem. Phys., Vol.13, pp.11695-11708, doi:10.5194/acp-1311695-2013.

2. Briggs G. A. (1971). Some recent analyses of plume rise observation, In: Proceedings of the Second International Clean Air Congress, Ed. H. M. Englund and W. T. Berry, Academic Press, Washington, U.S.A., pp. 1029-1032.

3. Briggs G.A. (1972). Discussion: chimney plumes in neutral and stable surroundings. Atmospheric Environment, Vol.6, pp.507-510, doi:10.1016/0004-6981(72)90120-5

4. Crutzen P.J., Elansky N.F., Hahn M., Golitsyn G.S., Benninkmeijer C.A.M., Scharffe D.H., Belikov I.B., Maiss M., Bergamaschi P., Röckmann T., Grisenko A.M., Sevostyanov V.M. (1998). Trace Gas Measurements Between Moscow and Vladivistok Using the Trans-Siberian Railroad. Journal of Atmospheric Chemistry, Vol.29, pp.179–194, doi:10.1023/A:1005848202970

5. Draxler R.R. (2006). The Use of Global and Mesoscale Meteorological Model Data to Predict the Transport and Dispersion of Tracer Plumes over Washington, D.C. Weather and Forecasting, Vol.21, No. 3., pp.383-394, doi:10.1175/WAF926.1.

6. Draxler R.R. and Hess G.D. (1998). An Overview of the Hysplit_4 Modeling System for Trajectories, Dispersion, and Deposition. Australian Meteorological Magazine. Vol.47, pp.295308.

7. Elansky N.F., Belikov I.B., Berezina E.V., Brenninkmeijer C.A.M., Buklikova N. N., Crutzen P.J., Doherty S., Elansky S.N., Elkins J.V., Elokhov A.S., Golitsyn G.S., Gorchakov G.I., Granberg I.G., Grisenko A.M., Holzinger R., Hurst D.F., Iordansky M.A., Kozlova A.A., Kopeikin V.M., Kuokka S., Lavrova O.V., Lisitsyna L.V., Obvintseva L.A., Oberlander E.A., Obvintsev Yu.I., Pankratova N.V., Postylyakov O.V., Putz E., Romashkin P.A., Safronov A.N., Shenfeld K.P., Skorokhod A.I., Shumsky R.A., Tarasova O.A., Turnbull J.C., Vartiainen E., Weissflog L.. Zhernikov K.V. (2009). Atmospheric composition observations over the Northern Eurasia using the mobile laboratory (Troica experiments). Obukhov Institute of Atmospheric Physics, Russian Academy of Science, International Science and Technology Center, European Union, pp.1-75.

8. Elansky N. F., Belikov I. B., Golitsyn G. S., Grisenko A. M., Lavrova O. V., Pankratova N. V., Safronov A. N., Skorokhod A. I., Shumsky R. A. Observations of the atmosphere composition in the Moscow megapolis from a mobile laboratory (2010). Doklady Earth Sciences, Vol.432, No 1, pp.649-655, doi:10.1134/S1028334X10050211.

9. Elansky N.F., Lavrova O.V., Skorokhod A. I., Belikov I. B. Trace gases in the atmosphere over Russian cities (2016) Atmospheric Environment, Vol.143, pp.108-119, doi:10.1016/j. atmosenv.2016.08.046

10. Elansky N.F., Ponomarev N. A., Verevkin Y. M. Air quality and pollutant emissions in the Moscow megacity in 2005–2014 (2018). Atmospheric Environment, Vol.175, pp. 54-64, doi:10.1016/j. atmosenv.2017.11.057

11. HYSPLIT Model Guide (The Hybrid Single Particle Lagrangian Integrated Trajectory model), desciption available on-line http://www.arl.noaa.gov/ready/hysplit4.html

12. ISCST3, Industrial Source Complex Short Term dispersion model, U.S. Environmental Protection Agency (EPA), User’s guide for the industrial source complex (ISC3) dispersion models, Volume II – description of model algorithms, Office of Air Quality Planning and Standards Emissions, Monitoring, and Analysis Division Research Triangle Park, North Carolina 27711, EPA-454/B-95-003b, September 1995. Available on-line: https://www3.epa.gov/scram001/ userg/regmod/isc3v2.pdf

13. Oberlander E. A., Brenninkmeijer C.A.M., Crutzen P.J., Elansky N.F., Golitsyn G.S., Granber I.G., Scharffe D.H., Hofmann R., Belikov I.B., Paretzke H.G. and van Velthoven P.F.J. (2002). Trace gas measurements along the Trans-Siberian railroad: The TROICA 5 expedition. // Journal of Geophysical Research: Atmospheres, Vol.107, Issue D14, doi:10.1029/2001DJ000953.

14. Skorokhod A. I., Berezina E. V., Moiseenko K. B., Elansky N. F., and Belikov I. B. (2017). Benzene and toluene in the surface air of northern Eurasia from TROICA-12 campaign along the TransSiberian Railway. Atmos. Chem. Phys., Vol.17, pp.5501-5514, doi:10.5194/acp-17-5501-2017.

15. Stein A. F., Draxler R. R., Rolph G. D., Stunder B.J.B., Cohen M.D., Ngan F. (2015). NOAA’s HYSPLIT Atmospheric Transport and Dispersion Modeling System. Bulletin of the American Meteorological Society, Vol.96, No.12, doi:10.1175/BAMS-D-14-00110.1.

16. Tarasova O.A., Brenninkmeijer C.A.M., Assonov S.S., Elansky N.F. and Hurst D.F. (2005). Methane variability measured across Russia during TROICA expeditions. Environmental Sciences, Vol. 2, No. 2-3, pp.241-251, doi: 10.1080/15693430500384713

17. Vasileva A., Moiseenko K., Skorokhod A., Belikov I., Kopeikin V., and Lavrova O. (2017). Emission ratios of trace gases and particles for Siberian forest fires on the basis of mobile ground observations. Atmos. Chem. Phys., Vol.17, pp.12303-12325, doi:10.5194/acp-17-12303-2017.


For citation:


Safronov A.N., Elansky N.F., Skorokhod A.I. DETECTION Of ATMOSPHERIC POLLUTION SOURCES BY USING CROSS-PLUME SCANNING METHOD AND MOBILE RAILwAY LABORATORY. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2018;11(3):71-82. https://doi.org/10.24057/2071-9388-2018-11-3-71-82

Views: 186


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)