Large-Eddy Simulation Of Aerosol Transport Over Different Urban Local Climate Zones
https://doi.org/10.24057/2071-9388-2025-3925
Abstract
As urban areas grow, understanding the impact of built environments on aerosol distribution is crucial for accurate monitoring and forecasting of urban air quality and for the development of mitigation strategies. This study uses Large Eddy Simulation approach combined with Local Climate Zones (LCZ) classification to simulate the transport of Lagrangian aerosol particles in different urban configurations. The study simulates several urban configurations based on LCZ classification, specifically LCZ 4 (open high-rise), LCZ 5 (open mid-rise), and LCZ 6 (open low-rise), varying in building height and density. Both regular and randomized urban development configurations were examined to understand the impact of building geometry on particle dispersion. The study reveals that building orientation significantly influences particle distribution, with structures parallel to the wind adding horizontal dispersion and those perpendicular promoting vertical mixing. In randomized configurations, variations in particle concentrations highlight the role of architectural heterogeneity in turbulence development and aerosol dispersion. The findings suggest that aggregated block- or district-scale building geometry properties strongly influence aerosol transport. For randomized urban configurations, without idealized regular structures, the difference in the large-scale morphometric characteristics of specified LCZ types has a significantly greater impact on the particle dispersion process than the local geometric differences between configurations of the same LCZ type. Future research taking into account diverse meteorological conditions and more LCZ types is recommended to enhance the accuracy and applicability of this approach.
Keywords
About the Authors
Alexander I. VarentsovRussian Federation
Leninskie Gory 1, b. 4, 119234, Moscow
Leninskie Gory 1, 119991, Moscow
Pyzhevskiy Pereulok 3, 119017, Moscow
Leninskie Gory 1, 119991, Moscow
Evgeny V. Mortikov
Russian Federation
Leninskie Gory 1, b. 4, 119234, Moscow
Leninskie Gory 1, 119991, Moscow
Gubkina 8, 119333, Moscow
Andrey V. Glazunov
Russian Federation
Gubkina 8, 119333, Moscow
Leninskie Gory 1, b. 4, 119234, Moscow
Andrey V. Debolskiy
Russian Federation
Leninskie Gory 1, b. 4, 119234, Moscow
Pyzhevskiy Pereulok 3, 119017, Moscow
Leninskie Gory 1, 119991, Moscow
Mariya A. Kuzmicheva
Russian Federation
Leninskie Gory 1, 119991, Moscow
Victor M. Stepanenko
Russian Federation
Leninskie Gory 1, b. 4, 119234, Moscow
Leninskie Gory 1, 119991, Moscow
References
1. Aslam A. and Rana I.A. (2022). The use of local climate zones in the urban environment: A systematic review of data sources, methods, and themes. Urban Climate, 42, 101120. DOI: 10.1016/j.uclim.2022.101120
2. Baklanov A., Hänninen O., Slørdal L.H., Kukkonen J., Bjergene N., Fay B., Finardi S., Hoe S.C., Jantunen M., Karppinen A., Rasmussen A., Skouloudis A., Sokhi R.S., Sørensen J.H. and Ødegaard V. (2007). Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmospheric Chemistry and Physics, 7(3), 855–874. DOI: 10.5194/acp-7-855-2007
3. Baklanov Alexander and Zhang Y. (2020). Advances in air quality modeling and forecasting. Global Transitions, 2, 261–270. DOI: 10.1016/j.glt.2020.11.001
4. Berlyand M.E. (1991). Prediction and Regulation of Air Pollution. Springer Netherlands. DOI: 10.1007/978-94-011-3768-3
5. Blocken B., Janssen W.D. and van Hooff T. (2012). CFD simulation for pedestrian wind comfort and wind safety in urban areas: General decision framework and case study for the Eindhoven University campus. Environmental Modelling & Software, 30, 15–34. DOI: 10.1016/j.envsoft.2011.11.009
6. Blocken Bert. (2015). Computational Fluid Dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations. Building and Environment, 91, 219–245. DOI: 10.1016/j.buildenv.2015.02.015
7. Britter R.E. and Hanna S.R. (2003). Better lowercase: Flow and dispersion in urban areas. Annual Review of Fluid Mechanics, 35(Volume 35, 2003), 469–496. DOI: 10.1146/annurev.fluid.35.101101.161147
8. Chatzidimitriou A. and Axarli K. (2017). Street Canyon Geometry Effects on Microclimate and Comfort; A Case Study in Thessaloniki. Procedia Environmental Sciences, 38, 643–650. DOI: 10.1016/j.proenv.2017.03.144
9. Cohen A.J., Brauer M., Burnett R., Anderson H.R., Frostad J., Estep K., Balakrishnan K., Brunekreef B., Dandona L., Dandona R., Feigin V., Freedman G., Hubbell B., Jobling A., Kan H., Knibbs L., Liu Y., Martin R., Morawska L., … Forouzanfar M.H. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. The Lancet, 389(10082), 1907–1918. DOI: 10.1016/S0140-6736(17)30505-6
10. Debolskiy A.V., Mortikov E.V., Glazunov A.V. and Lüpkes C. (2023). Evaluation of Surface Layer Stability Functions and Their Extension to First Order Turbulent Closures for Weakly and Strongly Stratified Stable Boundary Layer. Boundary-Layer Meteorology, 187(1–2), 73–93. DOI: 10.1007/s10546-023-00784-3
11. Demuzere M., Kittner J., Martilli A., Mills G., Moede C., Stewart I.D., Van Vliet J. and Bechtel B. (2022). A global map of local climate zones to support earth system modelling and urban-scale environmental science. Earth System Science Data, 14(8), 3835–3873. DOI: 10.5194/essd-14-3835-2022
12. Engel B. (2022). The Concept of the Socialist City. International Planning History Society Proceedings, 663-678 Pages. DOI: 10.7480/IPHS.2022.1.6516
13. Germano M., Piomelli U., Moin P. and Cabot W.H. (1991). A dynamic subgrid-scale eddy viscosity model. Physics of Fluids A: Fluid Dynamics, 3(7), 1760–1765. DOI: 10.1063/1.857955
14. Glazunov A.V. (2018). Numerical simulation of turbulence and transport of fine particulate impurities in street canyons. Numerical Methods and Programming (Vychislitel’nye Metody i Programmirovanie), 1(55), 17–37. DOI: 10.26089/NumMet.v19r103
15. Grylls T., Le Cornec C.M.A., Salizzoni P., Soulhac L., Stettler M.E.J. and Van Reeuwijk M. (2019). Evaluation of an operational air quality model using large-eddy simulation. Atmospheric Environment: X, 3, 100041. DOI: 10.1016/j.aeaoa.2019.100041
16. Holmes N.S. and Morawska L. (2006). A review of dispersion modelling and its application to the dispersion of particles: An overview of different dispersion models available. Atmospheric Environment, 40(30), 5902–5928. DOI: 10.1016/j.atmosenv.2006.06.003
17. Jiang R., Xie C., Man Z., Afshari A. and Che S. (2023). LCZ method is more effective than traditional LUCC method in interpreting the relationship between urban landscape and atmospheric particles. Science of The Total Environment, 869, 161677. DOI: 10.1016/j.scitotenv.2023.161677
18. Kadantsev E., Mortikov E. and Zilitinkevich S. (2021). The resistance law for stably stratified atmospheric planetary boundary layers. Quarterly Journal of the Royal Meteorological Society, 147(737), 2233–2243. DOI: 10.1002/qj.4019
19. Kadaverugu R., Sharma A., Matli C. and Biniwale R. (2019). High Resolution Urban Air Quality Modeling by Coupling CFD and Mesoscale Models: a Review. Asia-Pacific Journal of Atmospheric Sciences, 55(4), 539–556. DOI: 10.1007/s13143-019-00110-3
20. Kampa M. and Castanas E. (2008). Human health effects of air pollution. Environmental Pollution, 151(2), 362–367. DOI: 10.1016/j.envpol.2007.06.012
21. Kasimov N., Chalov S., Chubarova N., Kosheleva N., Popovicheva O., Shartova N., Stepanenko V., Androsova E., Chichaeva M., Erina O., Kirsanov A., Kovach R., Revich B., Shinkareva G., Tereshina M., Varentsov M., Vasil’chuk J., Vlasov D., Denisova I. and Minkina T. (2024). Urban heat and pollution island in the Moscow megacity: Urban environmental compartments and their interactions. Urban Climate, 55, 101972. DOI: 10.1016/j.uclim.2024.101972
22. Kosheleva N.E., Vlasov D.V., Korlyakov I.D. and Kasimov N.S. (2018). Сontamination of urban soils with heavy metals in Moscow as affected by building development. Science of The Total Environment, 636, 854–863. DOI: 10.1016/j.scitotenv.2018.04.308
23. Kurppa M., Hellsten A., Auvinen M., Raasch S., Vesala T. and Järvi L. (2018). Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective. Atmosphere, 9(2), 65. DOI: 10.3390/atmos9020065
24. Lee H. and Mayer H. (2018). Thermal comfort of pedestrians in an urban street canyon is affected by increasing albedo of building walls. International Journal of Biometeorology, 62(7), 1199–1209. DOI: 10.1007/s00484-018-1523-5
25. Lin Y., An X., Yuan J., Yuan J. and Chen B. (2024). The impact of the urban landscape on PM2.5 from LCZ perspective: A case study of Shenyang. Urban Climate, 57, 102107. DOI: 10.1016/j.uclim.2024.102107
26. Mortikov E.V., Glazunov A.V. and Lykosov V.N. (2019). Numerical study of plane Couette flow: turbulence statistics and the structure of pressure–strain correlations. Russian Journal of Numerical Analysis and Mathematical Modelling, 34(2), 119–132. DOI: 10.1515/rnam-2019-0010
27. Nourani S., Villalobos A.M. and Jorquera H. (2024). Indoor and outdoor PM2.5 in schools of Santiago, Chile: influence of local climate zone (LCZ) environment. Air Quality, Atmosphere & Health. DOI: 10.1007/s11869-024-01687-z
28. Oke T.R., Mills G., Christen A. and Voogt J.A. (2017). Urban Climates, 1st ed. Cambridge University Press. DOI: 10.1017/9781139016476
29. Pope III C.A. and Dockery D.W. (2006). Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association, 56(6), 709–742. DOI: 10.1080/10473289.2006.10464485
30. Reynolds A.M. and Cohen J.E. (2002). Stochastic simulation of heavy-particle trajectories in turbulent flows. Physics of Fluids, 14(1), 342–351. DOI: 10.1063/1.1426392
31. Shi Y., Ren C., Lau K.K.-L. and Ng E. (2019). Investigating the influence of urban land use and landscape pattern on PM2.5 spatial variation using mobile monitoring and WUDAPT. Landscape and Urban Planning, 189, 15–26. DOI: 10.1016/j.landurbplan.2019.04.004
32. Starchenko A.V., Danilkin E.A. and Leschinsky D.V. (2023). Numerical Simulation of the Distribution of Vehicle Emissions in a Street Canyon. Mathematical Models and Computer Simulations, 15(3), 427–435. DOI: 10.1134/S207004822303016X
33. Stewart I.D. and Oke T.R. (2012). Local Climate Zones for Urban Temperature Studies. DOI: 10.1175/BAMS-D-11-00019.1
34. Suiazova V.I., Debolskiy A.V. and Mortikov E.V. (2024). Study of Surface Layer Characteristics in the Presence of Suspended Snow Particles Using Observational Data and Large Eddy Simulation. Izvestiya, Atmospheric and Oceanic Physics, 60(2), 158–167. DOI: 10.1134/S000143382470021X
35. Sützl B.S., Rooney G.G. and Van Reeuwijk M. (2021). Drag Distribution in Idealized Heterogeneous Urban Environments. Boundary-Layer Meteorology, 178(2), 225–248. DOI: 10.1007/s10546-020-00567-0
36. Tarasova M.A., Debolskiy A.V., Mortikov E.V., Varentsov M.I., Glazunov A.V. and Stepanenko V.M. (2024). On the Parameterization of the Mean Wind Profile for Urban Canopy Models. Lobachevskii Journal of Mathematics, 45(7), 3198–3210. DOI: 10.1134/S1995080224603801
37. Thomson D.J. and Wilson J.D. (2012). History of Lagrangian Stochastic Models for Turbulent Dispersion. In: J. Lin, D. Brunner, C. Gerbig, A. Stohl, A. Luhar, and P. Webley eds., Lagrangian Modeling of the Atmosphere, 19–36. American Geophysical Union. DOI: 10.1029/2012GM001238
38. Tkachenko E.V., Debolskiy A.V., Mortikov E.V. and Glazunov A.V. (2022). Large-Eddy Simulation and Parameterization of Decaying Turbulence in the Evening Transition of the Atmospheric Boundary Layer. Izvestiya, Atmospheric and Oceanic Physics, 58(3), 219–236. DOI: 10.1134/S0001433822030112
39. Varentsov A.I., Imeev O.A., Glazunov A.V., Mortikov E.V. and Stepanenko V.M. (2023). Numerical Simulation of Particulate Matter Transport in the Atmospheric Urban Boundary Layer Using the Lagrangian Approach: Physical Problems and Parallel Implementation. Programming and Computer Software, 49(8), 894–905. DOI: 10.1134/S0361768823080248
40. Varentsov A.I., Stepanenko V.M., Mortikov E.V. and Konstantinov P.I. (2020). Numerical simulation of particle transport in the urban boundary layer with implications for SARS-CoV-2 virion distribution. IOP Conference Series: Earth and Environmental Science, 611(1), 012017. DOI: 10.1088/1755-1315/611/1/012017
41. Varentsov M., Konstantinov P., Repina I., Artamonov A., Pechkin A., Soromotin A., Esau I. and Baklanov A. (2023). Observations of the urban boundary layer in a cold climate city. Urban Climate, 47, 101351. DOI: 10.1016/j.uclim.2022.101351
42. Varentsov M., Samsonov T. and Demuzere M. (2020). Impact of Urban Canopy Parameters on a Megacity’s Modelled Thermal Environment. Atmosphere, 11(12), 1349. DOI: 10.3390/atmos11121349
43. Venter Z.S., Hassani A., Stange E., Schneider P. and Castell N. (2024). Reassessing the role of urban green space in air pollution control. Proceedings of the National Academy of Sciences, 121(6), e2306200121. DOI: 10.1073/pnas.2306200121
44. Wu B. and Liu C. (2023). Impacts of Building Environment and Urban Green Space Features on Urban Air Quality: Focusing on Interaction Effects and Nonlinearity. Buildings, 13(12), 3111. DOI: 10.3390/buildings13123111
45. Zhang Y., Ye X., Wang S., He X., Dong L., Zhang N., Wang H., Wang Z., Ma Y., Wang L., Chi X., Ding A., Yao M., Li Y., Li Q., Zhang L. and Xiao Y. (2021). Large-eddy simulation of traffic-related air pollution at a very high resolution in a mega-city: evaluation against mobile sensors and insights for influencing factors. Atmospheric Chemistry and Physics, 21(4), 2917–2929. DOI: 10.5194/acp-21-2917-2021
46. Zheng X. and Yang J. (2021). CFD simulations of wind flow and pollutant dispersion in a street canyon with traffic flow: Comparison between RANS and LES. Sustainable Cities and Society, 75, 103307. DOI: 10.1016/j.scs.2021.103307
47. Zhou S., Wang Y., Jia W., Wang M., Wu Y., Qiao R. and Wu Z. (2023). Automatic responsive-generation of 3D urban morphology coupled with local climate zones using generative adversarial network. Building and Environment, 245, 110855. DOI: 10.1016/j.buildenv.2023.110855
48. Zwozdziak A., Gini M.I., Samek L., Rogula-Kozlowska W., Sowka I. and Eleftheriadis K. (2017). Implications of the aerosol size distribution modal structure of trace and major elements on human exposure, inhaled dose and relevance to the PM2.5 and PM10 metrics in a European pollution hotspot urban area. Journal of Aerosol Science, 103, 38–52. DOI: 10.1016/j.jaerosci.2016.10.004
Review
For citations:
Varentsov A.I., Mortikov E.V., Glazunov A.V., Debolskiy A.V., Kuzmicheva M.A., Stepanenko V.M. Large-Eddy Simulation Of Aerosol Transport Over Different Urban Local Climate Zones. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(3):68-79. https://doi.org/10.24057/2071-9388-2025-3925