Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Geochemical Indication Of Sediment Fluxes Using Chernobyl-Derived 137Cs: The Case Study Of A Small Agricultural Catchment In The Tula Region, Central Russia

https://doi.org/10.24057/2071-9388-2025-3910

Abstract

This paper explores the use of 137Cs derived from Chernobyl as an indicator of sediment supply and transport within small agricultural catchments by analyzing the depth distribution of radionuclides, with a focus on post-Chernobyl changes in the activity concentration of radionuclides. To this end, depth-incremental sampling was carried out along routes of sediment transport within a small agricultural catchment subject to intense radioactive contamination in the Tula region. Some points were set to repeat the position of those made 27 years earlier and to understand the dynamics of deposition and the 137Cs content in the sediment load. It has been suggested that a decrease in the activity concentration of 137Cs can be used as an indicator of the relative age of deposits. Assuming this, the pattern of erosion product deposition on the sides and bottom of the dry valley was determined. This pattern was found to be stable and consistent with the observed geomorphic features and climate trends: the rate of accumulation in the valley bottom over the past 27 years has dropped almost twice, coinciding with a decrease in snowmelt runoff during springtime and no increase in intense rainfall. Grain-size analysis of the collected samples showed that selective transfer of clay particles may occur, but over a short delivery distance, it is unlikely that the sorting process will significantly alter the downward trend of 137Cs concentrations. The proposed approach has the potential to significantly improve the accuracy of sediment budget estimations and environmental quality assessments.

About the Authors

Maksim M. Ivanov
Faculty of Geography, Lomonosov Moscow State University; Institute of Geography of Russian Academy of Science
Russian Federation

Leninskie Gory 1, Moscow 119991

Staromonetniy lane. 29, Moscow, 119017



Valentin N. Golosov
Faculty of Geography, Lomonosov Moscow State University; Institute of Geography of Russian Academy of Science
Russian Federation

Leninskie Gory 1, Moscow 119991

Staromonetniy lane. 29, Moscow, 119017



Nadezhda N. Ivanova
Faculty of Geography, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow 119991



Polina I. Fominykh
Faculty of Geography, Lomonosov Moscow State University; Institute of Geography of Russian Academy of Science
Russian Federation

Leninskie Gory 1, Moscow 119991

Staromonetniy lane. 29, Moscow, 119017



References

1. Aoyama, M., Hirose, K., Igarashi, Y. (2006). Re-construction and updating our understanding on the global weapons tests 137Cs fallout. Journal of Environmental Monitoring, 8(4), 431-438, https://doi.org/10.1039/B512601K

2. Alewell C., Pitois A., Meusburger K., Ketterer M., Mabit L. (2017). 239+240Pu from “contaminant” to soil erosion tracer: Where do we stand? Earth-Science Reviews, 172, 107-123. https://doi.org/10.1016/j.earscirev.2017.07.009

3. Alexakhin P.M., Vasiliev A.V., Dikarev V.G. et al., (1992) Sel’skohozjajstvennaja radiojekologija [Agricultural radioecology]. Ecologiya, Moscow (In Russian)

4. Barabanov A.T., Dolgov S.V., Koronkevich N.I., Panov V.I., Petel’ko A.I. (2018) Surface runoff and snowmelt infiltration into the soil on plowlands in the forest-steppe and steppe zones of the East European Plain. Eurasian Soil Science. 51 (1), 66–72, https://doi.org/10.1134/S1064229318010039

5. Dai Z., Feng X., Zhang C., Shang L., Qiu G. (2013). Assessment of mercury erosion by surface water in Wanshan mercury mining area. Environmental research, 125, 2-11, https://doi.org/10.1016/j.envres.2013.03.014

6. Davis C.M. and Fox J.F. (2009). Sediment fingerprinting: review of the method and future improvements for allocating nonpoint source pollution. Journal of Environmental Engineering, 135(7), 490-504. https://doi.org/10.1061/(ASCE)0733-9372(2009)135:7(490)

7. Elbaz-Poulichet F., Guédron S., Anne-Lise D., Freydier R., Perrot V., Rossi M., Piot C., Delproux S., Sabatier, P. (2020). A 10,000-year record of trace metal and metalloid (Cu, Hg, Sb, Pb) deposition in a western Alpine lake (Lake Robert, France): Deciphering local and regional mining contamination. Quaternary Science Reviews, 228, 106076. https://doi.org/10.1016/j.quascirev.2019.106076

8. Evrard O., Laceby J. P., Lepage H., Onda Y., Cerdan O., Ayrault S. (2015). Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: A review. Journal of environmental radioactivity, 148, 92-110. https://doi.org/10.1016/j.jenvrad.2015.06.018

9. Evrard O., Chaboche P. A., Ramon R., Foucher A., Laceby J. P. (2020). A global review of sediment source fingerprinting research incorporating fallout radiocesium (137Cs). Geomorphology, 362, 107103. https://doi.org/10.1016/j.geomorph.2020.107103

10. Foucher A., Chaboche P.A., Sabatier P., Evrard O. (2021). A worldwide meta-analysis (1977–2020) of sediment core dating using fallout radionuclides including 137Cs and 210Pbxs. Earth System Science Data Discussions, 13(10), 1-61. https://doi.org/10.5194/essd-13-4951-2021

11. Gennadiev A.N., Zhidkin, A.P., Olson K.R., Kachinskii V.L. (2010). Soil erosion under different land uses: assessment by the magnetic tracer method. Eurasian soil science, 43, 1047-1054. https://doi.org/10.1134/S1064229310090127

12. Golosov V.N., Panin A.V., Markelov M.V., (1999a). Chernobyl 137Cs redistribution in the small basin of the Lokna river, Central Russia. Phys. and Chem. of the Earth, Part A: Sol. Earth and Geodesy, 24(10), 881–885 https://doi.org/10.1016/S1464-1895(99)00130-1

13. Golosov V.N., Walling D.E., Panin A.V., Stukin E.D., Kvasnikova E.V., Ivanova N.N. (1999b) The spatial variability of Chernobyl-derived 137Cs inventories in a small agricultural drainage basin in central Russia. Applied Radiation and Isotopes, 51(3), 341–352. https://doi.org/10.1016/S0969-8043(99)00050-0

14. Golosov V.N., Walling D.E., Kvasnikova E.V., Stukin E.D., Nikolaev A.N., Panin A.V. (2000). Application of a field-portable scintillation detector for studying the distribution of 137Cs inventories in a small basin in Central Russia. Journal of Environmental Radioactivity, 48(1), 79-94.

15. Golosov V.N., Belyaev V.R., Markelov M.V. (2013). Application of Chernobyl‐derived 137Cs fallout for sediment redistribution studies: lessons from European Russia. Hydrological processes, 27(6), 781-794. https://doi.org/10.1002/hyp.9470

16. Jagercikova M., Cornu S., Le Bas C., Evrard O. (2015) Vertical distributions of 137Cs in soils: a meta-analysis. Journal of Soils and Sediments, 15, 81–95 https://doi.org/10.1007/s11368-014-0982-5

17. Igarashi Y., Onda Y., Wakiyama Y., Yoshimura K., Kato H., Kozuka S., Manome R. (2021) Impacts of freeze-thaw processes and subsequent runoff on 137Cs washoff from bare land in Fukushima. Science of Total Environment, 769, 144706. https://doi.org/10.1016/j.scitotenv.2020.144706

18. Ivanov M.M. (2017) A geomorphological approach to the assessment of radioactive contamination in small lowland agricultural catchments. Geomorfologiya, 1, 30-45 (in Russian) https://doi.org/10.15356/0435-4281-2017-1-30-45

19. Ivanov M.M., Golosov V.N., Ivanova N.N. (2023) The sediment budget and migration of 137Cs in Chernobyl affected area: 30 years of investigations in the Plava River basin, Tula region. Geomorfologiya i Paleogeografiya, 54(1), 55,73 (in Russian). https://doi.org/10.31857/S0435428123010054

20. Ivanov M.M. and Ivanova N.N. Express analysis of vertical distribution of 137Cs to assess the rates of erosion and accumulation processes in the zone of intense radioactive contamination. Eurasian Soil Science, 56(4):524–533, 2023. http://dx.doi.org/10.1134/S1064229322602591

21. Ivanov M.M., Ivanova N.N., Golosov V.N., Usacheva A.A., Smolina G.A., Fomicheva D.V., (2024a) Assessment of Changes in Chernobyl Contamination and Erosion Rates for Arable Soils Using Resampling Method. Eurasian Soil Science , 57(9), 1499-1508 https://doi.org/10.1134/S1064229324601112

22. Ivanov M.M., Ivanova N.N., Krasnov S.F. (2024b) The role of lynchets in the redistribution of products of anthropogenic soil erosion. Moscow University Soil Science Bulletin, 79(3), 298-305 http://dx.doi.org/10.3103/s0147687424700212

23. Ivanova N.N., Golosov V.N., Markelov M.V. (2000) Sopostavlenie metodov ocenki intensivnosti jerozionno-akkumuljativnyh processov na obrabatyvaemyh sklonah [Comparison of methods for estimating the intensity of erosion-accumulation processes on cultivated slopes]. Pochvovedenie, 7, 876–887 (In Russian).

24. Izrael Y.A., De Cort M., Jones A.R., Nazarov I.M., Fridman S.D., Kvasnikova E.V., Stukin E.D., Matveenko I.I., Pokumeiko Yu.M., Tabatchyi K., Tsaturov Y. (1996). The atlas of cesium-137 contamination of Europe after the Chernobyl accident.

25. Konoplev A., Golosov V., Laptev G., Nanba K., Onda Y., Takase T., Wakiyama Y., Yoshimura K. (2016). Behavior of accidentally released radiocesium in soil–water environment: looking at Fukushima from a Chernobyl perspective. Journal of environmental radioactivity, 151, 568-578. https://doi.org/10.1016/j.jenvrad.2015.06.019

26. Lal R. (1994). Global overview of soil erosion. Soil and Water Science: Key to understanding our Global environment, 41, 39-51. https://doi.org/10.1007/978-981-16-9310-6_14

27. Konoplev А., Kanivets V., Zhukova О., Germenchuk М., Derkach H. (2021) Mid-to long-term radiocesium wash-off from contaminated catchments at Chernobyl and Fukushima. Water Research, 188, 116514. https://doi.org/10.1016/j.watres.2020.116514

28. Olson K.R., Gennadiyev A. N., Golosov V.N. (2008). Comparison of fly-ash and radio-cesium tracer methods to assess soil erosion and deposition in Illinois landscapes (USA). Soil science, 173(8), 575-586. DOI: 10.1097/SS.0b013e318182b094

29. Onda Y., Taniguchi K., Yoshimura K., Kato H., Takahashi J., Wakiyama Y., Coppin F., Smith H. (2020). Radionuclides from the Fukushima Daiichi nuclear power plant in terrestrial systems. Nature Reviews Earth & Environment, 1(12), 644-660. https://doi.org/10.1038/s43017-020-0099-x

30. Owens P.N. (2020). Soil erosion and sediment dynamics in the Anthropocene: a review of human impacts during a period of rapid global environmental change. Journal of Soils and Sediments, 20, 4115-4143. https://doi.org/10.1007/s11368-020-02815-9

31. Panin A.V., Walling D.E., Golosov V.N. (2001) The role of soil erosion and fluvial processes in the post-fallout redistribution of Chernobyl-derived caesium-137: a case study of the Lapki catchment, Central Russia. Geomorphology, 40(3-4), 185-204 https://doi.org/10.1016/S0169-555X(01)00043-5

32. Quinton J.N. and Catt J.A. (2007). Enrichment of heavy metals in sediment resulting from soil erosion on agricultural fields. Environmental Science & Technology, 41(10), 3495–3500 https://doi.org/10.1021/es062147h

33. Rashmi I., Karthika K.S., Roy T., Shinoji K.C., Kumawat A., Kala S., Pal R. (2022). Soil Erosion and sediments: a source of contamination and impact on agriculture productivity. In Agrochemicals in Soil and Environment: Impacts and Remediation(pp. 313-345). Singapore: Springer Nature Singapore. https://doi.org/10.1007/978-981-16-9310-6_14

34. Ratnikov A.I. (1960) “Geomorphological and agro-soil districts of Tula oblast,” in Soil Zoning of the USSR (Mosk. Univ., Moscow), 92-115 (in Russian)

35. Shamshurina E.N., Paramonova T.A., Golosov V.N. (2011) Vlijanie jerozionno-akkumuljativnyh processov na radiacionnuju obstanovku agrolandshaftov Kurskoj oblasti [The influence of erosion-accumulative processes on the radiation situation of agricultural landscapes of the Kursk region] Geografija i prirodnye resursy, (4), 40–45. (in Russsian)

36. Sidorchuk A.Y. (2018). The fluvial system on the East European plain: Sediment source and sink. Geography, Environment, Sustainability, 11(3), 5-20. https://doi.org/10.24057/2071-9388-2018-11-3-05-20

37. United Nations Scientific Committee on the Effects of Atomic Radiation, 2000. Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2000 Report, Volume I: Report to the General Assembly, with Scientific Annexes-Sources. United Nations. https://doi.org/10.18356/49c437f9-en

38. Reid L.M., and Dunne T. (2016). Sediment budgets as an organizing framework in fluvial geomorphology. Tools in fluvial geomorphology, 357-380. https://doi.org/10.1002/9781118648551.ch16

39. Schuller P., Walling D.E., Iroumé A., Quilodrán C., Castillo A., Navas, A. (2013). Using 137Cs and 210Pbex and other sediment source fingerprints to document suspended sediment sources in small forested catchments in south-central Chile. Journal of environmental radioactivity, 124, 147-159. https://doi.org/10.1016/j.jenvrad.2013.05.002

40. Vanwalleghem, T., Gómez, J. A., Amate, J. I., De Molina, M. G., Vanderlinden, K., Guzmán, G., Laguna A., Giráldez, J. V. (2017). Impact of historical land use and soil management change on soil erosion and agricultural sustainability during the Anthropocene. Anthropocene, 17, 13-29. https://doi.org/10.1016/j.ancene.2017.01.002

41. Wakiyama Y., Onda Y., Yoshimura K., Igarashi Y., Kato H. (2019). Land use types control solid wash-off rate and entrainment coefficient of Fukushima-derived 137Cs, and their time dependence. Journal of environmental radioactivity, 210, 105990. https://doi.org/10.1016/j.jenvrad.2019.105990

42. Walling D.E., Golosov V.N., Panin A.V., He Q. (2000) Use of radiocaesium to investigate erosion and sedimentation in areas with high levels of Chernobyl fallout. Tracers in geomorphology, 183-200

43. Walling D.E., Russell M.A., Hodgkinson R.A., Zhang,Y. (2002). Establishing sediment budgets for two small lowland agricultural catchments in the UK. Catena, 47(4), 323-353. https://doi.org/10.1016/S0341-8162(01)00187-4Get rights and content

44. Wang L., Chen G., Liu Y., Li R., Kong L., Huang L., Wang J., Kimpe L.E., Blais J.M. (2019). Environmental legacy and catchment erosion modulate sediment records of trace metals in alpine lakes of southwest China. Environmental Pollution, 254, 113090. https://doi.org/10.1016/j.envpol.2019.113090

45. Zapata F. (Ed.). (2002). Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides (Vol. 219, pp. 9348054-9). Dordrecht: Kluwer Academic Publishers. https://doi.org/10.1007/0-306-48054-9

46. Zapata F. (2003). The use of environmental radionuclides as tracers in soil erosion and sedimentation investigations: recent advances and future developments. Soil and Tillage Research, 69(1-2), 3-13. https://doi.org/10.1016/S0167-1987(02)00124-1

47. Zhidkin A., Gennadiev A., Fomicheva D., Shamshurina E., Golosov, V. (2023). Soil erosion models verification in a small catchment for different time windows with changing cropland boundary. Geoderma, 430, 116322. https://doi.org/10.1016/j.geoderma.2022.116322


Review

For citations:


Ivanov M.M., Golosov V.N., Ivanova N.N., Fominykh P.I. Geochemical Indication Of Sediment Fluxes Using Chernobyl-Derived 137Cs: The Case Study Of A Small Agricultural Catchment In The Tula Region, Central Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(3):59-67. https://doi.org/10.24057/2071-9388-2025-3910

Views: 4


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)