Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Evaluation Of Terrestrial Water Storage Products From Remote Sensing, Land Surface Model And Regional Hydrological Model Over Northern European Russia

https://doi.org/10.24057/2071-9388-2023-2899

Abstract

Water storage is one of the key components of terrestrial water balance, therefore its accurate assessment is necessary for a sufficient description of hydrological processes within river basins. Here we compare terrestrial water storage using calibrated hydrological model ECOMAG forced by gauge observations, uncalibrated INM RAS–MSU land surface model forced by reanalysis and GRACE satellite-based data over Northern Dvina and Pechora River basins. To clearly identify differences between the datasets long-term, seasonal and residual components were derived. Results show a predominance of the seasonal component variability over the region (~64% of the total) by all datasets but INM RAS–MSU shows a substantial percentage of long-term component variability as well (~31%), while GRACE and ECOMAG demonstrate the magnitude around 18%. Moreover, INM RAS–MSU shows lowest magnitude of annual range. ECOMAG and INM RAS–MSU is distinguished by earliest begin of TWS decline in spring, while GRACE demonstrates latest dates. Overall, ECOMAG has shown the lowest magnitude of random error from 9 mm for Northern Dvina basin to 10 mm for Pechora basin, while INM RAS–MSU has shown largest one.

About the Authors

V. Yu. Grigorev
Lomonosov Moscow State University; IWP RAS
Russian Federation

Faculty of Geography MSU

Leninskie Gory, Moscow, 119991

Gubkina str., Moscow, 119234



I. N. Krylenko
Lomonosov Moscow State University; IWP RAS
Russian Federation

Faculty of Geography MSU

Leninskie Gory, Moscow, 119991

Gubkina str., Moscow, 119234



A. I. Medvedev
Lomonosov Moscow State University; Hydrometeorological Research Center of the Russian Feleration
Russian Federation

Research Computing Center MSU

Leninskie Gory, Moscow, 119991

123242, Moscow



V. M. Stepanenko
Lomonosov Moscow State University; Lomonosov Moscow State University; Hydrometeorological Research Center of the Russian Feleration
Russian Federation

Faculty of Geography MSU

Research Computing Center MSU

Leninskie Gory, Moscow, 119991

123242, Moscow

Leninskie Gory, Moscow, 119991



References

1. Chen J., Tapley B., Tamisiea M.E., Save H., Wilson C., Bettadpur S. and Seo K.W. (2021). Error Assessment of GRACE and GRACE Follow-On Mass Change. Journal of Geophysical Research: Solid Earth, 126(9), e2021JB022124, DOI: 10.1029/2021JB022124

2. Cleveland R.B., Cleveland W.S., McRae J.E. and Terpenning I. (1990). STL: A Seasonal-Trend Decomposition Procedure Based on Loess (with Discussion). Journal of Official Statistics, 6, 3–73.

3. Eicker A., Jensen L., Wöhnke V., Dobslaw H., Kvas A., Mayer-Gürr T. and Dill R. (2020). Daily GRACE satellite data evaluate short-term hydrometeorological fluxes from global atmospheric reanalyses. Scientific Reports 2020 10, 4504, DOI: 10.1038/s41598-020-61166-0

4. Ferreira V.G., Montecino H.D.C., Yakubu C.I. and Heck B. (2016). Uncertainties of the Gravity Recovery and Climate Experiment timevariable gravity-field solutions based on three-cornered hat method. Journal of Applied Remote Sensing, 10(1), 015015, DOI: 10.1117/1. JRS.10.015015

5. Frolova N.L., Grigorev V.Y., Krylenko I.N. and Zakharova E.A. (2021). State-of-the-art potential of the GRACE satellite mission for solving modern hydrological problems. Vestnik of Saint Petersburg University. Earth Sciences, 66(1), 107–122 (in Russian with English summary), DOI: 10.21638/SPBU07.2021.107

6. Georgiadi A.G. and Groisman P.Y. (2022). Long-term changes of water flow, water temperature and heat flux of two largest arctic rivers of European Russia, Northern Dvina and Pechora. Environmental Research Letters, 17(8), 085002, DOI: 10.1088/1748-9326/AC82C1

7. Gupta D. and Dhanya C.T. (2021). Quantifying the Effect of GRACE Terrestrial Water Storage Anomaly in the Simulation of Extreme Flows. Journal of Hydrologic Engineering, 26(4), 04021007, DOI: 10.1061/(ASCE)HE.1943-5584.0002072

8. Han J., Yang Y., Roderick M.L., McVicar T.R., Yang D., Zhang S. and Beck H.E. (2020). Assessing the Steady-State Assumption in Water Balance Calculation Across Global Catchments. Water Resources Research, 56(7), e2020WR027392. DOI: 10.1029/2020WR027392

9. Hersbach H., Bell B., Berrisford P., Hirahara S., Horányi A., Muñoz-Sabater J., Nicolas J., Peubey C., Radu R., Schepers D., Simmons A., Soci C., Abdalla S., Abellan X., Balsamo G., Bechtold P., Biavati G., Bidlot J., Bonavita M., … Thépaut J. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730), 1999–2049, DOI: 10.1002/qj.3803

10. Humphrey V., Gudmundsson L. and Seneviratne S.I. (2016). Assessing Global Water Storage Variability from GRACE: Trends, Seasonal Cycle, Subseasonal Anomalies and Extremes. Surveys in Geophysics, 37(2), 357–395, DOI: 10.1007/S10712-016-9367-1

11. Kalugin A.S. and Motovilov Y.G. (2018). Runoff Formation Model for the Amur River Basin. Water Resources, 45(2), 149–159, DOI: 10.1134/S0097807818020082

12. Kim H., Yeh P.J.F., Oki T. and Kanae S. (2009). Role of rivers in the seasonal variations of terrestrial water storage over global basins. Geophysical Research Letters, 36(17), DOI: 10.1029/2009GL039006

13. Kvas A., Behzadpour S., Ellmer M., Klinger B., Strasser S., Zehentner N. and Mayer-Gürr T. (2019). ITSG-Grace2018: Overview and Evaluation of a New GRACE-Only Gravity Field Time Series. Journal of Geophysical Research: Solid Earth, 124(8), 9332–9344, DOI: 10.1029/2019JB017415

14. Landerer F.W., Flechtner F.M., Save H., Webb F.H., Bandikova T., Bertiger W.I., Bettadpur S. V., Byun S.H., Dahle C., Dobslaw H., Fahnestock E., Harvey N., Kang Z., Kruizinga G.L.H., Loomis B.D., McCullough C., Murböck M., Nagel P., Paik M., … Yuan D.N. (2020). Extending the Global Mass

15. Change Data Record: GRACE Follow-On Instrument and Science Data Performance. Geophysical Research Letters, 47(12), e2020GL088306, DOI: 10.1029/2020GL088306

16. Loveland T.R., Reed B.C., Ohlen D.O., Brown J.F., Zhu Z., Yang L. and Merchant J.W. (2000). Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data. International Journal of Remote Sensing, 21(6–7), 1303–1330, DOI: 10.1080/014311600210191

17. Machul’skaya E.E. and Lykosov V.N. (2009). Mathematical modeling of the atmosphere-cryolitic zone interaction. Izv. Atmos. Ocean. Phys., 45, 687–703, DOI: 10.1134/S0001433809060024

18. Massoud E.C., Bloom A.A., Longo M., Reager J.T., Levine P.A. and Worden J.R. (2022). Information content of soil hydrology in a west Amazon watershed as informed by GRACE. Hydrol. Earth Syst. Sci, 26, 1407–1423, DOI: 10.5194/hess-26-1407-2022

19. Motovilov, Yu., Gottschalk, L., Engeland, K. and Belokurov, A. (1998). ECOMAG — regional model of hydrological cycle. Application to the NOPEX region. Department of Geophysics, University of Oslo.

20. Nasonova O.N., Gusev Y.M. and Kovalev E. (2022). Climate change impact on water balance components in Arctic river basins. Geography, Environment, Sustainability, 15(4),148–157, DOI: 10.24057/2071-9388-2021-144

21. Popova V.V., Turkov D.V. and Nasonova O.N. (2021). Estimates of recent changes in snow storage in the river Northern Dvina basin from observations and modeling. Ice and Snow, 61(2), 206–221 (in Russian with English summary), DOI: 10.31857/S2076673421020082

22. Premoli A. and Tavella P. (1993). A Revisited Three-Cornered Hat Method for Estimating Frequency Standard Instability. IEEE Transactions on Instrumentation and Measurement, 42(1), 7–13, DOI: 10.1109/19.206671

23. Scanlon B.R., Zhang Z., Rateb A., Sun A., Wiese D., Save H., Beaudoing H., Lo M.H., Müller-Schmied H., Döll P., van Beek R., Swenson S., Lawrence D., Croteau M. and Reedy R.C. (2019). Tracking Seasonal Fluctuations in Land Water Storage Using Global Models and GRACE Satellites. Geophysical Research Letters, 46(10), 5254–5264, DOI: 10.1029/2018GL081836

24. Scanlon Bridget R., Zhang Z., Save H., Sun A.Y., Schmied H.M., Van Beek L.P.H., Wiese D.N., Wada Y., Long D., Reedy R.C., Longuevergne L., Döll P. and Bierkens M.F.P. (2018). Global models underestimate large decadal declining and rising water storage trends relative to GRACE satellite data. Proceedings of the National Academy of Sciences of the United States of America, 115(6), E1080–E1089, DOI: 10.1073/PNAS.1704665115

25. Tapley B.D., Watkins M.M., Flechtner F., Reigber C., Bettadpur S., Rodell M., Sasgen I., Famiglietti J.S., Landerer F.W., Chambers D.P., Reager J.T., Gardner A.S., Save H., Ivins E.R., Swenson S.C., Boening C., Dahle C., Wiese D.N., Dobslaw H., … Velicogna I. (2019). Contributions of GRACE to understanding climate change. Nature Climate Change, 9(5), 358–369, DOI: 10.1038/s41558-019-0456-2

26. Volodin E.M. and Lykosov V.N. (1998). Parametrization of heat and moisture transfer in the soil-vegetation system for use in atmospheric general circulation models: 1. Formulation and simulations based on local observational data. Izvestiya, Atmospheric and Oceanic Physics, 37(4), 405–416.

27. Wilson M.F. and Henderson-Sellers A. (1985). A global archive of land cover and soils data for use in general circulation climate models. Journal of Climatology, 5(2), 119–143, DOI: 10.1002/JOC.3370050202

28. Wu R.J., Lo M.H. and Scanlon B.R. (2021). The Annual Cycle of Terrestrial Water Storage Anomalies in CMIP6 Models Evaluated against GRACE Data. Journal of Climate, 34(20), 8205–8217, DOI: 10.1175/JCLI-D-21-0021.1

29. Xu T., Guo Z.X., Xia Y.L., Ferreira V.G., Liu S.M., Wang K.C., Yao Y., Zhang X. and Zhao C. (2019). Evaluation of twelve evapotranspiration products from machine learning, remote sensing and land surface models over conterminous United States. Journal of Hydrology, 578, 124105. DOI: 10.1016//J.JHYDROL.2019.124105

30. Zhang Y., He B., Guo L., Liu J. and Xie X. (2019). The relative contributions of precipitation, evapotranspiration, and runoff to terrestrial water storage changes across 168 river basins. Journal of Hydrology, 579, 124194. DOI: 10.1016/J.JHYDROL.2019.124194


Review

For citations:


Grigorev V.Yu., Krylenko I.N., Medvedev A.I., Stepanenko V.M. Evaluation Of Terrestrial Water Storage Products From Remote Sensing, Land Surface Model And Regional Hydrological Model Over Northern European Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(4):6-13. https://doi.org/10.24057/2071-9388-2023-2899

Views: 685


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)