Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

THE OXYGEN REGIME OF A SHALLOW LAKE

https://doi.org/10.15356/2071-9388_02v09_2016_04

Full Text:

Abstract

The year-round measurement data of water temperature and dissolved oxygen content in a small boreal Lake Vendyurskoe in 2007–2013 were used to explore the hydrophysical prerequisits of anoxia and accumulation and emission of greenhouse gases. Typically, anoxia appears in the bottom layers of lakes in mid-winter and during the summer  stagnation. The thickness of the benthic anaerobic zone (dissolved oxygen concentration <2 mg·l–1) reached one meter in the end of the winter and at the peak of the summer stratification, except for the extremely hot summer of 2010, when it reached five meters. Synoptic conditions had a crucial influence on the formation and destruction of the benthic anaerobic zones in summer. The most favorable oxygen dynamics was observed during the cold summers of 2008, 2009, and 2012, when the repeated full mixings of the water column occurred under conditions of the cyclonic weather. In the winter periods, the early dates of ice season resulted in the most pronounced deficiency of oxygen.

About the Authors

Galina Zdorovennova
Northern Water Problems Institute
Russian Federation


Nikolay Palshin
Northern Water Problems Institute
Russian Federation


Roman Zdorovennov
Northern Water Problems Institute
Russian Federation


Sergey Golosov
Northern Water Problems Institute, Institute of Limnology, Russian Academy of Sciences
Russian Federation


Tatyana Efremova
Northern Water Problems Institute
Russian Federation


Galina Gavrilenko
Northern Water Problems Institute
Russian Federation


Arkady Terzhevik
Northern Water Problems Institute
Russian Federation


References

1. Baehr, M.M., DeGrandpre, M.D. (2002) Under-ice CO2 and O2 variability in a freshwater lake. Biogeochemistry, V. 61, pp. 95–113.

2. Baehr, M.M., DeGrandpre, M.D. (2004) In situ pCO2 and O2 measurements in a lake during turnover and stratification: observations and modeling. Limnol. Oceanogr., N 49, pp. 330–340.

3. Barica, J., Mathias, J.A. (1979) Oxygen depletion and winterkill risk in small prairie lakes under extended ice cover. J. Fish. Res. Board Can., N 36, pp. 980–986.

4. Bernhardt, J., Kirillin, G., Hupfer, M. (2014) Periodic convection within littoral lake sediments on the background of seiche-driven oxygen fluctuations. Limnology and Oceanography: Fluids and Environment, N 4, pp. 17–33.

5. Boylen, C., Brock, T. (1973) Bacterial decomposition processes in Lake Wingra sediments during winter. Limnol. Oceanogr., N 4 (18), pp. 628–634.

6. Brekhovskih V.F. (1988) Gidrofizicheskie faktory formirovaniya kislorodnogo rezhima vodoemov [Hydrophysical factors of water bodies oxygen regime formation]. Moscow: Nauka, 166 p. [in Russian].

7. Denfeld, B.A., Wallin, M.B., Sahlée, E., Sobek, S., Kokic, J., Chmiel, H.E., Weyhenmeyer, G.A. (2015) Temporal and spatial carbon dioxide concentration patterns in a small boreal lake in relation to ice-cover dynamics. Boreal Env. Res., N 20 (6), pp. 679–692.

8. Efremova, T.V, Palshin, N.I., Zdorovennova, G.E., Terzhevik, A.Yu. (2015) Effect of extreme hot summer of 2010 on the water temperature and oxygen distribution in Karelian lakes. Meteorology and Hydrology, N 9 (40), pp. 67–76.

9. Gavrilenko, G., Zdorovennova, G., Zdorovennov, R. (2014) Termicheskij i kislorodnyj rezhimy melkovodnogo ozera posle vzloma l’da [Thermal and oxygen regimes of shallow lake after breaking the ice]. In: Geography: traditions and innovations in science and education. SPb.: Herzen State Pedagogical University, Publishing, pp. 142–144. [in Russian].

10. Golosov, S., Maher, O.A., Schipunova, E., Terzhevik, A., Zdorovennova, G., Kirillin, G. (2007) Physical background of the development of oxygen depletion in ice-covered lakes. Oecologia, N 151 (2), pp. 331–340.

11. Golosov, S., Terzhevik, A., Zverev, I., Kirillin, G., Engelhardt, C. (2012) Climate change impact on thermal and oxygen regime of shallow lakes. Tellus A, N 64, 17264.

12. Greenbank, J. (1945) Limnological conditions in ice-covered lakes, especially as related to winter-kill of fish. Ecological Monographs, N 4 (15), pp. 343–392.

13. Hargrave, B. (1972) A comparison of sediment oxygen uptake, hypolimnetic oxygen deficit and primary production in Lake Esrom, Denmark. Vehr. Int. Ver. Limnol., N 18, pp. 134–139.

14. Heiskanen, J.J., Mammarella, I., Haapanala, S., Pumpanen, J., Vesala, T., MacIntyre, S., Ojala, A. (2014) Effect of cooling and internal wave motions on gas transfer coefficients in a boreal lake. Tellus B, 66, 22827, http://dx.doi.org/10.3402/tellusb.v66.22827.

15. Huotari, J., Ojala, A., Peltomaa, E., Pumpanen, J., Hari, P., Vesala, T. (2009) Temporal variations in surface water CO2 concentration in a boreal humic lake based on highfrequency measurements. Boreal Env. Res., N 14 (Suppl. A), pp. 48–60.

16. Huotari, J., Ojala, A., Peltomaa, E., Nordbo, A, Launiainen, S., Pumpanen, J., Rasilo, T., Hari, P., Vesala, T. (2011) Longterm direct CO2 measurements over a boral lake: five years of eddy covariance data. Geophys. Res. Lett. 38: L18401, doi: 10.1029/2011GL048753.

17. Kankaala, P., Huotari, J., Tulonen, T., Ojala, A. (2013) Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape. Linmol. Oceanogr. N 58 (6), pp. 1915–1930.

18. Lohila, A., Tuovinen, J.-P., Hatakka, J., Aurela, M., Vuorenmaa, J., Haakana, M., Laurila, T. (2015) Carbon dioxide and energy fluxes over a northern boreal lake. Boreal Env. Res., 20, pp. 474–488.

19. Lorke, A., Muller, B., Maerki, M., Wuest, A. (2003) Breathing sediments: The control of diffusive transport across the sediment-water interface by periodic boundary-layer turbulence. Limnol. Oceanogr., N 48 (6), pp. 2077–2085.

20. Mackenthun, A.A., Stefan, H.G. (1998) Effect of flow velocity on sediment oxygen demand: Experiments. J. Environ. Eng., N 124, pp. 222–230.

21. Malm, J. (1998) Bottom buoyancy layer in an ice-covered lake. Water Resources Research, 34 (11), pp. 2981–2993.

22. Mathias, J., Barica, J. (1980) Factors controlling oxygen depletion in ice-covered lakes. Can. J. Fish. Aquat. Sci., N 37, pp. 185–194.

23. McGinnis, D.F., Kirillin, G., Tang, K.W., Flury, S., Bodmer, P., Engelhardt, C., Casper, P., Grossart H.-P. (2015) Enhancing Surface Methane Fluxes from an Oligotrophic Lake: Exploring the Microbubble Hypothesis. Environmental Science & Technology, N 49 (2), pp. 873–880.

24. Miettinen, H., Pumpanen, J., Heiskanen, J.J., Aaltonen, H., Mammarella, I., Ojala, A., Levula, J., Rantakari, M. (2015) Towards a more comprehensive understanding of lacustrine greenhouse gas dynamics – two-year measurements of concentrations and fluxes of CO2, CH4 and N2O in a typical boreal lake surrounded by managed forests. Boreal Env. Res. 20 (1): 75–89.

25. Palshin, N.I., Efremova, T.V., Zdorovennov, R.E., Zdorovennova, G.E. (2009) Perenos tepla v malom ozere v period ledostava [Heat transfer in a small lake during ice-covered period]. Proceedings of the VII Conference of “Dynamic and thermal regime of rivers, reservoirs and coastal seas” Moscow: People’s Friendship University, pp. 200–207. [in Russian].

26. Terzhevik, A., Golosov, S., Palshin, N., Mitrokhov, A., Zdorovennov, R., Zdorovennova, G., Kirillin, G., Shipunova, E, Zverev, I. (2009) Some features of the thermal and dissolved oxygen structure in boreal, shallow ice-covered Lake Vendyurskoe, Russia. Aquatic Ecology, N 43 (3), pp. 617–627.

27. Terzhevik, A.Y., Palshin, N.I., Zdorovennov, R.E., Zdorovennova, G.E., Mitrokhov, A.V., Potakhin, M.S., Golosov, S.D., Shipunova, E.A., Zverev, I.S. (2010) Hydrophysical aspects of oxygen regime formation in a shallow ice-covered lake. Water Resources, N 37 (5), pp. 662–673.

28. Trenberth, K.E., Fasullo, J.T. (2012) Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res, V. 117, pp. 1–12, D17103, doi:10.1029/2012JD018020.

29. Zdorovennov, R.E., Zdorovennova, G.E., Palshin N.I., Terzhevik A.Yu. (2011) Izmenchivost’ termicheskogo i kislorodnogo rezhimov melkovodnogo ozera zimoj [Variation of the temperature and oxygen regimes of a shallow lake in winter]. Transactions of Karelian Research Centre of Russian Academy of Science, N 4, Northern Water Problems, pp. 57–63. [in Russian].

30. Zdorovennov, R., Palshin, N., Zdorovennova, G., Efremova, T., Terzhevik, A. (2013) Interannual variability of ice and snow cover of a small shallow lake. Estonian Journal of Earth Sciences, N 61 (1), pp. 26–32.


For citation:


Zdorovennova G., Palshin N., Zdorovennov R., Golosov S., Efremova T., Gavrilenko G., Terzhevik A. THE OXYGEN REGIME OF A SHALLOW LAKE. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2016;9(2):47-57. https://doi.org/10.15356/2071-9388_02v09_2016_04

Views: 370


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)