Advanced search


Full Text:


This article is based on extensive biogeochemical research conducted in Moscow’s Eastern Administrative District, where motor-vehicle traffic and heavy industry have resulted in some of the highest levels of pollution in the city. For this study, 26 samples of maple leaves (Acer platanoides) and 49 samples of dandelion leaves (Taraxacum officinale)
were collected on a regular grid at 500–700 m intervals. Concentrations of Fe, Mn, Mo, Cd, Pb, Zn, Cu, As and Sb in these plants were measured using atomic absorption spectrometry after washing, drying and HNO3 + H2O2 digestion. Maples accumulated Sb9,7As4,6Mo2,2Fe2,0Zn1,5 Pb1,4Cu1,2, while dandelions accumulated Mo12,7Pb4,9Cd4,4Fe4,3As3,9Sb2,7Cu1,4 — normalized to concentrations in background samples from an unpolluted site west from Moscow. The plants’ geochemical specialization was detected and compared in the following land-use areas: industrial, traffic, recreational, agricultural, and high-, mid-, and low-rise residential development. For maples, the highest concentration factor levels were found in industrial areas, with accumulations of Sb19As2,4Mo1,7Zn1,7Fe1,5Cu1,4Pb1,4. These levels were 2–5 times
lower for maples in other land-use areas. Dandelions and maples do not accumulate Mn
because of antagonism between Zn, Mo and Mn in soils. Copper is not concentrated by
herbaceous species because of antagonism between Mo and Cu. Differences in  eochemical specialization were shown using the Sb/Mo ratio: in dandelions this was 5 times lower than in background samples, while in maples it was 4.5 times higher. A Zv ratio was used to evaluate the intensity of biogeochemical transformation in urban plants. The highest Zv ratios were found in plants near industrial zones and large roads.

About the Authors

Dmitry V. Vlasov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography

Nikolay S. Kasimov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography


1. A lloway B.J. (2013). Heavy metals and metalloids as micronutrients for plants and animals, pp. 195–209. In: Heavy metals in soils. Trace metals and metalloids in soils and their bioavailability. Dordrecht: Springer Science + Buiness Media.

2. A rzhanova V.S., Elpatievsky P.V. (1990). Geokhimija landshaftov i tehnogenez [Landscape geochemistry and technogenesis], Nauka, Moscow, 196 p. (in Russian).

3. Bargagli R. (1998). Trace elements in terrestrial plants: An ecophysiological approach to biomonitoring and biorecovery. Springer, 324 p.

4. Bech J., Corrales I., Tume P., Barcelo J., Duran P., Roca N., Poschenrieder C. (2012). Accumulation of antimony and other potentially toxic elements in plants around a former antimony mine located in the Ribes Valley (Eastern Pyrenees). Journal of Geochemical Exploration, vol. 113, pp. 100–105.

5. Bezuglaya E.Yu., Smirnova I.V. (2008). Vozdukh gorodov i ego izmenenija [Atmospheric air of cities and its changes], Asterion, Saint-Petersburg, 254 p. (in Russian).

6. Bityukova V.R., Kasimov N.S., Vlasov D.V. (2011). Ekologicheskij portret rossijskih gorodov [Environmental Portrait of Russian Cities], Ekologiya I promyshlennost Rossii, No. 4, pp. 6–18 (in Russian).

7. Bol’shoj atlas Moskvy (2012). [The Big Atlas of Moscow], Feoria, Moscow, 1000 p. (in Russian).

8. Boryіo A., Nowicki W., Skwarzec B. (2013). The concentration of trace metals in selected cultivated and meadow plants collected from the vicinity of a phosphogypsum stack in Northern Poland. Polish Journal of Environmental Studies, vol. 22, No. 2, pp. 347–356.

9. C zarnowska K., Milewska A. (2000). The content of heavy metals in an indicator plant (Taraxacum officinale) in Warsaw. Polish Journal of Environmental Studies, vol. 9, No. 2, pp. 125–128.

10. D eu M., Kreeb K.H. (1993). Seasonal variations of foliar metal content in three fruit tree species, pp. 577–591. In Plants as Biomonitors. Indicators for Heavy Metals in the Terrestrial Environment. Weinheim: VCH .

11. D jingova R., Kuleff I. (1999). Seasonal variations in the metal concentration of Taraxacum officinale, Plantago major and Plantago lanceolata. Chemistry and Ecology, vol. 16, pp. 239–253.

12. D jingova R., Kuleff I., Markert B. (2004). Chemical fingerprinting of plants. Ecological Research, vol. 19, pp. 3–11.

13. E kogeokhimiya gorodskih landshaftov (1995). [Ecogeochemistry of urban landscapes], ed. by N.S. Kasimov, Izd-vo Mosk. un-ta, Moscow, 336 p. (in Russian).

14. E kologiya goroda (2004). [Ecology of the city], ed. by A.S. Kurbatova, V.N. Bashkin, N.S. Kasimov, Nauchniy mir, Moscow, 624 p. (in Russian).

15. E lpatievsky P.V. (1993). Geokhimija migratsionnyh potokov v prirodnyh i prirodnotehnogennyh geosistemah [Geochemistry of migration flows in natural and naturaltechnogenic geosystems], Nauka, Moscow, 253 p. (in Russian).

16. Filella M., Williams P.A., Belzile N. (2009). Antimony in the environment: knowns and unknowns. Environmental Chemistry, vol. 6, pp. 95–105.

17. Gjorgieva D., Kadifkova-Panovska T., Bačeva K., Stafilov T. (2011). Assessment of heavy metal pollution in Republic of Macedonia using a plant assay. Archives of Environmental Contamination and Toxicology, vol. 60, pp. 233–240.

18. H еkanson L. (1980). An ecological risk index for aquatic pollution control: a sedimentological approach. Water Research, vol. 14, pp. 975–1001.

19. H ussain I., Khan L. (2010). Comparative study on heavy metal contents in Taraxacum officinale. International Journal of Pharmacognosy and Phytochemical Research, vol. 2, No. 1, pp. 15–18.

20. Kabata-Pendias A. (2011). Trace elements in soils and plants (4–th edition). CRC Press, Taylor & Francis Group, 505 p.

21. Kasimov N.S., Kosheleva N.E., Sorokina O.I., Gunin P.D., Bazha S.N., Enkh-Amgalan S. (2011). An ecological-geochemical assessment of the state of woody vegetation in Ulaanbaatar city (Mongolia). Arid Ecosystems, vol. 1, iss. 4, pp. 201–213.

22. Kasimov N.S., Kosheleva N.E., Vlasov D.V., Terskaya E.V. (2012a). Geohimija snezhnogo pokrova v Vostochnom okruge Moskvy [Geochemistry of snow cover within the Eastern district of Moscow], Vestnik Moskovskogo Universiteta, seria Geografiya, No. 4, pp. 14–24. (In Russian).

23. Kasimov N.S., Nikiforova E.M., Kosheleva N.E., Khaybrakhmanov T.S. (2012b). Geoinformatsionnoe landshaftno-geohimicheskoe kartografirovanie gorodskih territorij (na primere VAO Moskvy). 1. Kartograficheskoe obespechenie [Geoinformation landscape and geochemical mapping of city territories (the case of Eastern District of Moscow) 1. Cartographic support], Geoinformatika, No. 4, pp. 37–45. (In Russian).

24. Kasimov N.S., Vlasov D.V. (2014). Global and regional geochemical indexes of production of chemical elements. Geography, Environment, Sustainability, No. 1, vol. 7, pp. 52–65.

25. Keane B., Collier M.H., Shann J.R., Rogstad S.H. (2001). Metal content of dandelion (Taraxacum officinale) leaves in relation to soil contamination and airborne particulate matter. The Science of the Total Environment, vol. 281, pp. 63–78.

26. Klinskaya E.O., Khristoforova N.K. (2011). Biogeohimicheskaja ocenka sostojanija pridorozhnyh zon gorodov Dal’nego Vostoka po soderzhaniju tjazhelyh metallov v oduvanchikah [Biogeochemical estimation of the condition of the road reserve in the Far East of the Russian Federation by the heavy metal content in dandelions], Ucheniye Zapiski Komsomolskogo-na-Amure gos. techn. un-ta, vol. 1, No. 5, pp. 89–92. (in Russian).

27. Kosheleva N.E., Makarova M.G., Novikova O.V. (2005). Tyazhelyye metally v listyakh drevesnykh porod gorodskikh landshaftov [ Heavy metals in the foliage of deciduous species in urban landscapes], Vestnik Moskovskogo Universiteta, seria Geografiya, No. 3, pp. 74–81. (in Russian)

28. Kosiba P. (2009). Self-organizing feature maps and selected conventional numerical methods for assessment of environmental quality. Acta Societatis Botanicorum Poloniae, vol. 78, No. 4, pp. 335–343.

29. Krolak E. (2003). Accumulation of Zn, Cu, Pb and Cd by dandelion (Taraxacum officinale Web.) in environments with various degrees of metallic contamination. Polish Journal of Environmental Studies, vol. 12, No. 6, pp. 713–721.

30. Kuleff I., Djingova R. (1984). The dandelion (Taraxacum officinale) — A monitor for environmental pollution? Water, Air and Soil Pollution, vol. 21, pp. 77–85.

31. Kvesitadze G.I., Khatisashvili G.A., Sadunishvili T.A., Evstigneeva Z.G. (2005). Metabolizm antropogennyh toksikantov v vysshih rastenijah [Metabolism of toxicants in higher plants], Nauka, Moscow, 199 p. (in Russian).

32. L eonard A., Gerber G.B. (1996). Mutagenicity, carcinogenicity and teratogenicity of antimony compounds. Mutation Research — Reviews in Genetic Toxicology, vol. 366, iss. 1, pp. 1–8.

33. L epneva O.M., Obukhov A.I. (1987). Tjazhelye metally v pochvah i rastenijah territorii Moskovskogo gosudarstvennogo universiteta [Heavy metals in soils and plants on territory of Moscow State University], Vestnik Moskovskogo Universiteta, seria Pochvovedenie, No. 1, pp. 36–43. (in Russian).

34. L imbeck A., Puls C. (2011). Particulate emissions from on-road vehicles. In: Urban airborne particulate matter: origin, chemistry, fate and health impacts. Edited by F. Zereini, C.L.S. Wiseman. Heidelberg: Springer-Verlag Berlin. pp. 63–79.

35. L ough G.C., Schauer J.J. Park J.-S., Shafer M.M., Deminter J.T., Weinstein J.P. (2005). Emissions of metals associated with motor vehicle roadways. Environmental Science and Technology, vol. 39, pp. 826–836.

36. M alizia D., Giuliano A., Ortaggi G., Masotti A. (2012). Common plants as alternative analytical tools to monitor heavy metals in soil. Chemistry Central Journal, vol. 6 (Suppl. 2): S6, 10 p.

37. M arr K., Fyles H., Hendershot W. (1999). Trace metals in Montreal urban soils and the leaves of Taraxacum officinale. Canadian Journal of Soil Science. vol. 79, pp. 385–387.

38. M assa N., Andreucci F., Poli M., Aceto M., Barbato R., Berta G. (2010). Screening for heavy metal accumulators amongst autochtonous plants in a polluted site in Italy. Ecotoxicology and Environmental Safety, vol. 73, pp. 1988–1997.

39. Nikiforova E.M., Kasimov N.S., Kosheleva N.E., Novikova O.V. (2010). Prostranstvennovremennye trendy zagrjaznenija gorodskih pochv i rastenij soedinenijami svinca (na primere Vostochnogo okruga Moskvy) [Spatial-temporal trends in pollution of urban soils and vegetation with lead compounds (case study of the Eastern district of Moscow)],Vestnik Moskovskogo Universiteta, seria Geografiya, No. 1, pp. 11–20. (In Russian).

40. Nikiforova E.M., Kosheleva N.E., Kasimov N.S. (2011). Ocenka zagrjaznenija tjazhelymi metallami pochv Vostochnogo okruga g. Moskvy (po dannym 1989–2010 gg.) [Analysis of pollution with heavy metals in soils of the Eastern District of Moscow (based on data collected during 1989–2010)], Inzhenernaya Geologia, No. 3, pp. 34–45. (In Russian).

41. Nikiforova E.M., Lazukova G.G. (1991). Geohimicheskaja ocenka zagrjaznenija tjazhelymi metallami pochv i rastenij gorodskih jekosistem Perovskogo rajona Moskvy [Geochemical assessment of heavy metal contamination of soils and plants of urban ecosystems in Perovsky district of Moscow], Vestnik Moskovskogo Universiteta, seria Geografiya, No. 3, pp. 44–53. (in Russian).

42. Nikiforova E.M., Lazukova G.G. (1995). Moskva. Perovskij rajon (mashinostroenie). Ravninnye landshafty [Moscow. Perovsky district (metalworking). Plain landscapes]. In: Ekogeohimija gorodskih landshaftov, ed. by N.S. Kasimov, Izd-vo Mosk. un-ta, Moscow, pp. 57–89. (in Russian).

43. Novikova O.V. Kosheleva N.E. (2007). Ekologo-geohimicheskaja ocenka sostojanija drevesnoj rastitel’nosti g. Kito (Ekvador) [Ecological-geochemical assessment of woody vegetation in Quito (Ecuador)], Vestnik Moskovskogo Universiteta, seria Geografiya, No. 6, pp. 43–48. (in Russian).

44. P erel’man A.I., Kasimov N.S. (1999). Geokhimija landshafta [Landscape geochemistry], Astrea-2000, Moscow, 768 p. (in Russian).

45. P iczak K., Leśniewicz A., Zyrnicki W. (2003). Metal concentrations in deciduous tree leaves from urban areas in Poland. Environmental Monitoring and Assessment, vol. 86, pp. 273–287.

46. S hishlova N.A. Khristoforova N.K. (2009). Ocenka zagrjaznenija atmosfernogo vozduha g. Ussurijska po soderzhaniju tjazhelyh metallov v oduvanchike lekarstvennom [Assessing the Air Pollution in Ussurijsk by Heavy Metal Contents of Taraxacum officinale], Vestnik SVNC DVO RAN, No. 4, pp. 77–80. (in Russian).

47. S htangeeva I., Bali R., Harris A. (2011). Bioavailability and toxicity of antimony. Journal of Geochemical Exploration, vol. 110, pp. 40–45.

48. S mith W.H. (1973). Metal contamination of urban woody plants. Environmental Science & Technology, vol. 7, No. 7, pp. 631–636.

49. S orokina O.I. (2013). Tjazhelye metally v landshaftakh g. Ulan-Batora [Heavy metals in landscapes of Ulaanbaatar city], Ph.D. thesis, Faculty of Geography, MSU, Moscow, 144 p. (in Russian).

50. T horpe A., Harrison R.M. (2008). Source and properties of non-exhaust particulate matter from road traffic: A review. Science of the Total Environment, vol. 400, pp. 270–282.

51. T omašević M., Aničić M., Jovanović Lj., Perić-Grujić A., Ristić M. (2011). Deciduous tree leaves in trace elements biomonitoring: A contribution to methodology. Ecological Indicators, vol. 11, pp. 1689–1695.

52. W inter S., Wappelhorst O., Markert B. (2000). Löwenzahn Taraxacum officinale Web. als (städtischer) Bioindikator. Umweltwissenschaften und Schadstoff-Forschung, vol. 12 (6), pp. 311–321.

53. W orld Urbanization Prospects (2011). United Nations, Department of Economic and Social Affairs [online]. Available from: [Accessed 17.09.2013].

54. Y anin E.P. (1999). Vvedenie v ekologicheskuju geohimiju [Introduction in ecological geochemistry], IMGRE, Moscow, 68 p. (in Russian).

55. Y u.E. Saet, B.A. Revich, E.P. Yanin et al. (1990). Geohimija okruzhajushhej sredy [Environmental geochemistry], Nedra, Moscow, 335 p. (In Russian).

For citation:


Views: 195

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)