Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

GEOMORPHOLOGIC HAZARD AND DISASTERS IN THE SOUTH AMERICAN ANDES

https://doi.org/10.24057/2071-9388-2014-7-1-80-98

Abstract

Geological-and-tectonic and physiographical features of the South American Pacific coast caused high intensity of morpholitogenesis including disaster-like way of some geomorphologic processes. Their complex, interaction, and intensity of conductive factors increase the risk of disaster. The Andean terrain morphology and rock lithology, precipitation type, and vegetation status are the main drivers that influence the character and high potential intensity of the geomorphologic processes. The enormous hydrometeorological events, frequent seismic shocks, volcanic eruptions, and human impact cause disasters development. A schematic map of disaster and hazardous processes for the Central sector of Andes was compiled. 16 areas with different spectra of the dominant catastrophic processes were identified. The South American Andes extension allows drawing out principles of geomorphologic disasters of these continental marginal mountains in various natural zones - from temporal to subequatorial latitudes, which are characterized by the individual unique heat-moisture rate, which governs both typical and extreme geomorphologic processes. An important feature of the study area is the asymmetric distribution of geomorphologic processes within coastal and inland slopes of the mountain system, as well as latitudinal zoning of this distribution.

About the Authors

Ekaterina V. Lebedeva
Institute of Geography Russian Academy of Sciences, Moscow, Russia
Russian Federation


Dmitry V. Mikhalev
Faculty of Geography, Lomonosov Moscow State University, Moscow, Russia
Russian Federation


José E. Novoa Jerez
University of La Serena - CEAZA
Russian Federation


Mariya E. Kladovschikova
Institute of Geography Russian Academy of Sciences, Moscow, Russia
Russian Federation


References

1. Aleksandrov S.M. (1996). Nonlinear nature of the relief-forming processes and extreme situations // Moscow: RFBR, 112 p. (in Russian with English summary).

2. Alvarado P., Beck S. (2006). Source characterization of the San Juan (Argentina) crustal earthquakes of 15 January 1944 (Mw 7,0) and 11 June 1952 (Mw 6,8) // Earth and Planetary Science Letters. N 243 (3-4). P. 615-631.

3. Ananiev G.S. (1998). Catastrophic relief-forming processes // Moscow: MSU Publishing House, 101 p. (in Russian).

4. Ananiev G.S. (1999). Exogenous processes at the north-west of South America during El-Nino 1997-1998 // Proceedings of the Russian Geographic Society. Vol. 131, Issue 4, pp. 18-25. (in Russian).

5. Angillieri M.Y. (2008) Morphometric analysis of Colangüil river basin and flash flood hazard, San Juan, Argentina // Environ Geol. N 55. P. 107-111.

6. Budarina O.I., Perov V.F., Sidorova T.L., Belaya N.L. (2000). Genesis and regime of mudflows in South America // Records of Glaciological Studies, Iss. 88, pp. 50-55. (in Russian with English summary).

7. Cembrano J., Lara L. (2009). The link between volcanism and tectonics in the southern volcanic zone of the Chilean Andes: a review // Tectonophysics, N 471, pp. 96-113.

8. Charrier R., Horail G., Pinto L., Garcia M. et al. (2013). Cenozoic tectonic evolution in the Central Andes in northern Chile and west central Bolivia: implications for paleogeographic, magmatic and mountain building evolution // Intern. Journ. of Earth Sciences (Geol Rundsch). N 102. P. 235-264.

9. Codron J.C., Cervera F.S. (2000) Riesgos naturals en Los Andes: cambio ambiental, percepcion y sosteniilidad // Boletin de la A.G.E.N. N 30. P. 69-84.

10. Enman V.B. (1973). Modern Earth crust movements and earthquakes // Modern Earth crust movements. Tartu: Estonian SSR Academy of Science, pp. 633-642. (in Russian)

11. Garreaud R. (1992). Impacto de la variabilidad de la linea de nieve en crecidas invernales en cuencas pluvio-nivales de Chile Central // XI Congreso Chileno de la Sociedad Chilena de Ingenieria Hidroulica, Santiago. 15 p.

12. Garreaud R. (2009). The Andes climate and weather // Advances in Geosciences. N 22,pp. 3-11.

13. Garreaud R., Vuille M., Clement A.C. (2003). The climate of the Altiplano: observed current conditions and mechanisms of past changes // Palaeogeography, Palaeoclimatology, Palaeoecology. N 194, pp. 5-22.

14. Geomorphologic hazards and disaster prevention (2010). Ed. Alcontara-Ayala I., Goudie A. Cambridge: University Press. 291 p.

15. Golubev G.N. (1969). Chile rivers nourishment // MSU Bulletin. Series 5 - Geography, N 2, pp. 36-41. (in Russian with English summary).

16. Gotvanskiy V.I., Lebedeva E.V. (2010). Natural and anthropogenic factors influence on geomorphologic processes intensity in the Far East // Geomorphology, N 2, pp. 26-36. (in Russian with English summary).

17. http://inosmi.ru/infographic/20111226/181319543

18. http://finam.info/need/news2478800001

19. http://www.ncedc.org/anss/catalog-search.html

20. http://www.volcano.si.edu/world

21. Kazakov N.A. (2000) Possible mechanism of formation of seismogenic avalanches // Records of Glaciological Studies, Iss. 88, pp. 102-106 (in Russian with English summary).

22. Kladovschikova M.E. (2008). Relief development and relief-forming processes of marginal continental mountains (the Andes case) // Author’s abstract of a thesis, Moscow: MSU Geographic department, p. 24. (in Russian with English summary).

23. Korotkiy A.M., Korobov V.V., Skrylnik G.P. (2011). Anomalous natural processes and its influence on geosystems stability in the south of Russian Far East // Vladivostok: Dalnauka, 265 p. (in Russian with English summary).

24. Lebedeva E.V. (2013). Natural and anthropogenic basis of geomorphologic processes intensity in the Andes // Geomorpology, N 4, pp. 58-71 (in Russian with English summary).

25. Levin B.W., Sasorova E.V. (2009). Latitudinal distribution of earthquakes in the Andes and its peculiarity // Advances in Geosciences. N 22, pp. 139-145.

26. Lukashova E.N. (1958). South America // Moscow: Uchpedgiz, 467 p. (in Russian).

27. Marcato G. , Pasuto A., Rivelli F.R. (2009). Mass movements in the Rio Grande Valley (Quebrada de Humahuaca, Northwestern Argentina): a methodological approach to reduce the risk // Advances in Geosciences. N 22, pp. 59-65.

28. Montgomery D.; Balco G., Willett S. (2001). Climate, tectonics, and the morphology of the Andes // Geology. N 29 (7), pp. 579-582.

29. Nicholson Sh.E. (2011). Dryland climatology. Cambridge Univ. Press. 516 p.

30. Novoa J.E. (1993). Eficacia geomorfolуgica sistema de playas y dunas Bahia de Coquimbo (IV Regiуn, Chile semorido): discusion metodolуgica y resultados // Anales Sociedad Chilena de Ciencias Geograficas. N 1, pp. 26-33.

31. Novoa J.E (2013). Mass land movements on slopes and its influence on the Western Andes morphogenesis (Chile) // Geomorphology, N 2, pp. 81-96. (in Russian with English summary).

32. Novoa J.E., Araya A.A., Fernandez R.M., Araya M.C. (1995). Potential tsunami effects in La Serena area North-Central Chile / Late Quaternary coastal records of rapid change: Application to present and future conditions. Chile, Antofagasta. 12 p.

33. Novoa J. E., Meza M., Moreno I. et al. (1988). Analisis morfodinamico aplicado al. diagnуstico de riegos naturales en los sistemas de La Gasca y San Carlos (Quito, Ecuador) // Geografia y Desarrollo. N 2, pp. 303-330. 34. Pararas-Carayannis G. (1974). An investigation of tsunami source mechanism off the coast of Central Peru // Marine Geology. V. 17. Amsterdam: Elsevier. P. 235-247.

34. Perov V.F. (2012). Mudflow studies // Moscow: MSU Geographic department, 272 p. (in Russian).

35. Phillips J. (2011). Emergence and pseudo-equilibrium in geomorphology // Geomorphology. N 132 (3-4), pp. 319-326.

36. Porter M., Savigny K.W. (2002). Natural hazard and risk management for South American pipelines // Proceedings of IPC 2002: 4th International Pipeline Conference. Calgary, Canada. IPC02-27235. 8 p.

37. Rantsman E.Y., Glasko M.P (2004). Morphostructural centres - places of extreme natural phenomena // Moscow: Media-PRESS, 223 p. (in Russian).

38. Sergio A. Sepúlveda, Alejandra Serey, Marisol Lara. et al. (2010). Landslides induced by the April 2007 Aysén Fjord earthquake, Chilean Patagonia. Landslides N 7, pp. 483-492. DOI 10.1007/s10346-010-0203-2.

39. Stillwell D. (1992). Natural hazards and disasters in Latin America // Natural Hazards. N 6, pp. 131-159.

40. Tectonic Evolution of South America (2000) // 31° Intern. Geol. Congress, Rio de Janeiro. 650 p

41. The Andes: Active Subduction Orogeny. (2006). Springer-Verlag Berlin Heidelberg. 440 p

42. Tilling R. I. (2009). Volcanism and associated hazards: the Andean perspective // Advances in Geosciences. N 22, pp. 125-137

43. Troshkina E.S., Kondakova N.L. (2000). New data on the avalanche mode mountainous areas of the Southern Hemisphere // Records of Glaciological Studies, Iss. 88, pp. 92-101 (in Russian with English summary)

44. Ufimtsev G.F. (2011). Andes diary (relief and morphotectonics of the Peruvian Andes) // Moscow: Scientific World, 164 p. (in Russian)

45. Zhidkov M.P. (1985). Morphostructure of continental-oceanic suture zones of Pacific Rim concerning powerful earthquakes places forecast (Kamchatka, west of South America) // Author’s abstract of a thesis. Moscow: IG RAS, 27 p. (in Russian)

46. Zavgorodnaya S.S. (1996). Modern geomorphologic processes and its inventory for ecologic and commercial purposes in Ecuador // Author’s abstract of a thesis. Moscow-Quito: MSU, 43 p. (in Russian)


Review

For citations:


Lebedeva E.V., Mikhalev D.V., Novoa Jerez J.E., Kladovschikova M.E. GEOMORPHOLOGIC HAZARD AND DISASTERS IN THE SOUTH AMERICAN ANDES. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2014;7(1):80-98. https://doi.org/10.24057/2071-9388-2014-7-1-80-98

Views: 853


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)