Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

The Chernobyl Signature in Western Abkhazia: Assessing 137Cs Deposition Variability and Applicability for evaluation sediment redistribution rates

https://doi.org/10.24057/2071-9388-2025-4097

Abstract

This study presents the first documented evidence of radioactive contamination in Western Abkhazia linked to the Chernobyl Nuclear Power Plant accident. The data obtained show that the level of ¹³⁷Cs radioactive contamination in the study area ranged from 50 to 160 kBq/m² in 1986. This corresponds to contemporary values of 25 to 79 kBq/m² when considering the radionuclide’s half-life. These measurements are highly consistent with data recorded in the adjacent Sochi region, where contamination levels varied between 40 and 185 kBq/m² in 1986. The local spatial variability of ¹³⁷Cs fallout was studied at four reference sites, located in different parts of the Mussera upland. All investigated sites demonstrated moderate variability, with value ranges of 17–25%. This heterogeneous distribution pattern is attributed to a combination of factors, including local topography, atmospheric deposition characteristics, and anthropogenic influence. Measurements of ambient dose equivalent rates ranged from 0.01 to 0.05 μSv/h. While no direct correlation was found between dose rates and the age or genesis of the underlying bedrock, a clear relationship was established between dose rates and terrain morphology. Elevated dose rates were consistently recorded in erosional landforms within topographically dissected areas. Analysis of peat cores from the Pitsunda Peninsula lagoon provided conclusive evidence of the Chernobyl disaster’s impact on Western Abkhazia, with a measured ¹³⁷Cs inventory of 20.7 kBq/m² (equivalent to 49.5 kBq/m² when corrected to 1986 values). Application of the non-equilibrium ²¹⁰Pb dating method yielded a peat accumulation rate of 0.1 cm/year.

 The Chernobyl accident resulted in a significant release of 137Cs, leading to widespread radioactive fallout. This document assesses the 137Cs inventory and its impact on ambient dose rates in the affected regions.

About the Authors

N. V. Kuzmenkova
Lomonosov Moscow State University, Chemistry Faculty
Russian Federation

119991, Moscow, Leninskie Gory. 1



V. N. Golosov
Lomonosov Moscow State University,Faculty of Geography; Institute of Geography RAS
Russian Federation

119991, Moscow, Leninskie Gory 1

119017, Moscow, Staromonetny per. 29, str. 4



A. K. Fomina
Lomonosov Moscow State University,Faculty of Geography
Russian Federation

119991, Moscow, Leninskie Gory. 1



M. V. Markelov
JSC “Institute of Environmental Survey, Planning & Assessment”
Russian Federation

1192341, Moscow, Leninskiye Gory, bld. 751



N. P. Zaraiskiy
Lomonosov Moscow State University,Faculty of Geography
Russian Federation

119991, Moscow, Leninskie Gory. 1



N. E. Zaretskaya
Institute of Geography RAS
Russian Federation

119017, Moscow, Staromonetny per. 29, str. 4



E. A. Eremenko
Lomonosov Moscow State University,Faculty of Geography
Russian Federation

119991, Moscow, Leninskie Gory. 1



References

1. Aquino-López, M.A., Blaauw, M., Christen, J.A. et al. Bayesian Analysis of Pb Dating. JABES 23, 317–333 (2018). https://doi.org/10.1007/s13253-018-0328-7

2. Balabanov I.P. Paleogeograficheskie predposylki formirovaniya sovremennykh prirodnykh usloviy i dolgosrochnyy prognoz razvitiya golotsenovykh terras Chernomorskogo poberezh’ya Kavkaza. Moskva-Vladivostok, «Dal’nauka», 2009, 352 s. (in Russian).

3. Buraeva, E.A., Bezuglova, O.S., Stasov, V.V., Nefedov, V.S., Dergacheva, E.V., Goncharenko, A.A., Martynenko, S.V., Goncharova, L.Yu., Gorbov, S.N., Malyshevsky, V.S., Varduny, T.V. (2015). Features of 137Cs distribution and dynamics in the main soils of the steppe zone in the southern European Russia. Geoderma 259–260, 259–270. https://doi.org/10.1016/j.geoderma.2015.06.014

4. Chambers, F.M., Beilman, D.W., Yu, Z. (2010). Methods for determining peat humification and for quantifying peat bulk density, organic matter and carbon content for palaeostudies of climate and peatland carbon dynamics. Mires and Peat, 7(7), 1–10.

5. De Cort, M. (1998). Atlas of caesium deposition on Europe after the Chernobyl accident.

6. Efimov, V.V., Anisimov, A.E. (2011). Climatic parameters of wind-field variability in the Black Sea region: Numerical reanalysis of regional atmospheric circulation. Izv. Atmospheric Ocean. Phys. 47, 350–361. https://doi.org/10.1134/S0001433811030030

7. Ivanov M.M., Kuzmenkova N.V., Rozhkova A.K., Grabenko E.A., Grachev A.M., Golosov V.N., (2022). The anthropogenic fallout radionuclides in soils of Mount Khuko (the Western Caucasus) and their application for determination of sediment redistribution, Journal of Environmental Radioactivity, Volume 248, 106880, https://doi.org/10.1016/j.jenvrad.2022.106880.

8. Evrard O., J. P. Laceby, H. Lepage, Y. Onda, O. Cerdan, S. Ayrault. (2015). Radiocesium transfer from hillslopes to the Pacific Ocean after the Fukushima Nuclear Power Plant accident: a review. J. Environ. Radioact. 148, 92–110.

9. Eyrolle, F., Radakovitch, O., Raimbault, P. (2012). Consequences of hydrological events on the delivery of suspended sediment and associated radionuclides from the Rhône River to the Mediterranean Sea. J Soils Sediments 12, 1479–1495. https://doi.org/10.1007/s11368012-0575-0

10. Förstner, U., et al. (2018). Sediment dynamics and pollutant mobility in rivers: An interdisciplinary approach. Springer.

11. Foucher, A., Evrard, O., et al. (2015). Increased contribution of radionuclide deposition in mountainous areas: The case of the French Alps. Journal of Environmental Radioactivity, 148, 87-94.

12. Frédéric Herman, Edward J. Rhodes, Jean Braun, Lukas Heiniger. (2010) Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology, Earth and Planetary Science Letters, Volume 297, Issues 1–2, https://doi.org/10.1016/j.epsl.2010.06.019.

13. Golosov V.N., Ivanov M.M., Tsyplenkov A.S. (2021). Erosion as a factor of transformation of soil radioactive contamination in the basin of the Shchekino Reservoir (Tula Region). Eurasian Soil Sci 54:291–303. https://doi.org/10.1134/S106422932102006X

14. Golosov, V.N. (2002). Special considerations for areas affected by Chernobyl fallout. In: Zapata, F. (Ed.), Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides. Kluwer Academic Publishers, Dordrecht, pp. 165–183

15. Golosov, V.N., Walling, D.E., Konoplev, A.V., Ivanov, M.M., Sharifullin, A.G. (2018). Application of bomb- and Chernobyl-derived radiocaesium for reconstructing changes in erosion rates and sediment fluxes from croplands in areas of European Russia with different levels of Chernobyl fallout. J. Environ. Radioact. 186, 78–89. https://doi.org/10.1016/j.jenvrad.2017.06.022

16. Golosov, V.N., Walling, D.E., Panin, A.V., Stukin, E.D., Kvasnikova, E.V., Ivanova, N.N. (1999). The spatial variability of Chernobyl-derived 137Cs inventories in a small agricultural drainage basin in central Russia. Applied Radiation and Isotopes 51, 341–352.

17. Golosov, V.N., Markelov, M.V., Belyaev, V.R., & Zhukova, O.M. (2008). Problemy opredeleniya prostranstvennoy neodnorodnosti vypadeniy ¹³⁷Cs dlya otsenki tempov erozionno-akkumulyativnykh protsessov [Problems of assessing spatial heterogeneity of ¹³⁷Cs fallout for evaluation of erosion-accumulation rates]. Meteorologiya i Gidrologiya, 4, 30-45 (in Russian).

18. Higgitt, D.L., Froehlich, W., Walling, D.E. (1992). Applications and limitations of Chernobyl radiocaesium measurements in a Carpathian erosion investigation, Poland. Land Degradation and Rehabilitation 3, 15–26.

19. Improved Models for Estimating Soil Erosion Rates from Cesium‐137 Measurements - Walling - 1999 - Journal of Environmental Quality - Wiley Online Library [WWW Document], n.d. (accessed 4.26.25).

20. Ito, E., Miura, S., Aoyama, M., Shichi, K. (2020). Global 137Cs fallout inventories of forest soil across Japan and their consequences half a century later. J. Environ. Radioact. 225, 106421. https://doi.org/10.1016/j.jenvrad.2020.106421

21. Ivanov, M.M. (2017). Geomorfologicheskiy podkhod k izucheniyu radioaktivnogo zagryazneniya malykh vodosborov v predelakh osvaivaemykh ravnin [Geomorphological approach to studying radioactive contamination in small catchments of cultivated plains]. Geomorfologiya i Paleogeografiya, (0), 30-45 (in Russian). https://doi.org/10.15356/0435-4281-2017-1-30-45

22. Izrael, Y.A. (2007). CHERNOBYL RADIONUCLIDE DISTRIBUTION AND MIGRATION. Health Phys. 93, 410–417. https://doi.org/10.1097/01.HP.0000285092.10598.41

23. J.T. Smith, P.G. Appleby, J. Hilton, N. (1997). Richardson, Inventories and fluxes of 210Pb, 137Cs and 241Am determined from the soils of three small catchments in Cumbria, UK, Journal of Environmental Radioactivity, Volume 37, Issue 2. https://doi.org/10.1016/S0265931X(97)00003-9.

24. Benoit, G., Rozan, T.F., n.d. 210Pb and 137Cs dating methods in lakes: a retrospective study 12.

25. Kirchner, G. (2013). Establishing reference inventories of Cs-137 for soil erosion studies: methodological aspects. Geoderma 211, 107– 115. http://dx.doi.org/10.1016/j.geoderma.2013.07.011.

26. Kuchava, N., Imnadze, P., Nikolaishvili, I., Chkhartishvili, L. (2019). Case Study on Vertical Migration of 137Cs Radionuclide in Soil of Two Resorts in Georgia after 31 Years from Chernobyl Accident.

27. Kudelsky, A.V., Smith, J.T., Ovsiannikova, S.V., Hilton, J., 1996. Mobility of Chernobyl-derived 137Cs in a peatbog system within the catchment of the Pripyat River, Belarus. The Science of the Total Environment 188, 101-113.

28. Kuzmenkova, N.V., Ivanov, M.M., Alexandrin, M.Y., Grachev, A.M., Rozhkova, A.K., Zhizhin, K.D., Grabenko, E.A., Golosov, V.N. (2020). Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes. Environ. Pollut. 262, 114269. https://doi.org/10.1016/j.envpol.2020.114269

29. Kuzmenkova Natalia, Golosov Valentin, Ivanov Maxim, Alexandrin Mikhail, Korneva Irina, Grabenko Evgeny, Rozhkova Alexandra, Bykhalova Olga (2023). Bottom sediment radioactivity of the six Caucasus lakes located in different altitude zones. Environ Sci Pollut Res 30, 50690–50702. DOI https://doi.org/10.1007/s11356-023-25838-4

30. Le Roux, G., De Vleeschouwer, F., Piotrowska, N., et al. (2012). High-altitude peat bog records of atmospheric deposition in the European Alps. The Holocene, 22(7), 751–762. DOI: 10.1177/0959683611434223

31. Linnik, V.G., Brown, J.E., Dowdall, M., Potapov, V.N., Surkov, V.V., Korobova, E.M., Volosov, A.G., Vakulovsky, S.M., Tertyshnik, E.G. (2005). Radioactive contamination of the Balchug (Upper Yenisey) floodplain, Russia in sedimentation processes and geomorphology. Sci. Total Environ. 399 (1–3), 233–251.

32. Linnik, V.G. (2011). Technogenic radionuclides in floodplains of the Techa and the middle part of the Yenisey Rivers. Vestnik (Series 5, Geography), 4. Moscow State University 24–30 (in Russian).

33. Lobb, D.A., Kachanoski, R.G., Miller, M.H. (1995). Tillage translocation and tillage erosion on shoulder slope landscape positions measured using cs-137 as a tracer. Canadian. Journal of Soil Science 75 (2), 211–218.

34. Łokas, E., Wachniew, P., Jodłowski, P., Gąsiorek, M. (2017). Airborne radionuclides in the proglacial environment as indicators of sources and transfers of soil material. J. Environ. Radioact. 178–179, 193–202. https://doi.org/10.1016/j.jenvrad.2017.08.018

35. Loughran R. J., Elliott G. L., Campbell B. L. and Shelley D. J. (1988). Estimation of soil erosion from caesium-137 measurements in a small, cultivated cathment in Australia. Appl. Radiot. Isot. 39, 1153.

36. Martynenko, V.P., Linnik, V.G., Govorun, A.P. et al. Comparison of the Results of Field Radiometry and Sampling in the Investigation of 137Cs Soil Content in Bryansk Oblast. Atomic Energy 95, 727–733 (2003). https://doi.org/10.1023/B:ATEN.0000010992.31484.3c.

37. Oldfield, F., Richardson, N., Appleby, P.G. (1995). Radiometric dating (210Pb, 137Cs, 241Am) of recent ombrotrophic peat accumulation and evidence for changes in mass balance. The Holocene 5, 141–148. https://doi.org/10.1177/095968369500500202

38. Oldfield, F., Wake, R., Boyle, J., et al. (1997). The late-Holocene history of Gormire Lake (NE England) and its catchment: A multiproxy reconstruction of past human impact. The Holocene, 7(1), 101-110.

39. Owens, P.N., Walling, D.E. (1996). Spatial variability of caesium-137 inventories at reference sites: an example from two contrasting sites in England and Zimbabwe. Appl. Rad. Isot. 47, 699-707.

40. Pearson, E.J., et al. (2019). Peatland carbon accumulation in a warming world: A case study from New Zealand. Global Change Biology, 25(12), 4254-4268.

41. Pearson, E.J., Royles, J., Amesbury, M.J., et al. (2019). Peatland carbon accumulation in a warming world: A case study from New Zealand. Global Change Biology, 25(12), 4254–4268. DOI: 10.1111/gcb.14834

42. Roos-Barraclough, F., Shotyk, W., Norton, S.A. (2002). *A 14,500-year record of peat accumulation in Switzerland.* The Holocene, 12(6), 687–696.

43. Sedighi, F., Darvishan, A.K., Golosov, V., Zare, M.R. (2020). Relationship between Mean Annual Precipitation and Inventories of Fallout Radionuclides (137Cs and 210Pbexcess) in Undisturbed Soils around the World: A Review. Eurasian Soil Sci. 53, 1332–1341. https://doi.org/10.1134/S1064229320090148

44. Shotyk, W., et al. (2002). A peat bog record of atmospheric Pb pollution since the Roman times. Science, 281(5383), 1635–1640.

45. Sutherland, R.A. (1996). Caesium-137 soil sampling and inventory variability in reference locations: a literature survey. Hydrol. Processes 10, 43±53

46. Tashilova, A.A., Ashabokov, B.A., Kesheva, L.A., Teunova, N.V. (2019). Analysis of Climate Change in the Caucasus Region: End of the 20th– Beginning of the 21st Century. Climate 7, 11. https://doi.org/10.3390/cli7010011

47. Tolonen, K., Warner, B.G., & Vasander, H. (1992). Ecology of Testaceans (Protozoa: Rhizopoda) in mires in southern Finland: I. Autecology. Archiv für Protistenkunde, 142(1-2), 119-138.

48. Tsitskishvili, M.S., Tsitskishvili, M.M., Chkhartishvili, A.G. (2020). Artificial Radionuclides in the Caucasus Int. Sci. Conf. “Modern Probl. Ecol. 7. (in Russian)

49. V. N. Golosov, “Special considerations for areas affected by Chernobyl fallout,”.In Zapata (ed.) Handbook for the Assessment of Soil Erosion and Sedimentation Using Environmental Radionuclides (Kluwer, Dordrecht, 2002),pp. 165–183.

50. Van Pelt, R. S., Zobeck, T. M., Ritchie, J. C., & Gill, T. E. (2007). Validating the use of 137 Cs measurements to estimate rates of soil redistribution by wind. Catena, 70(3), 455–464. https://doi.org/10.1016/j.catena.2006.11.014

51. Varley A., A. Tyler, Y. Bondar, A. Hosseini, V. Zabrotski, M. Dowdall, (2018). Reconstructing the deposition 137Cs environment and longterm fate of Chernobyl at the floodplain scale through mobile gamma spectrometry, Environ. Pollut. 240, 191–199.


Review

For citations:


Kuzmenkova N.V., Golosov V.N., Fomina A.K., Markelov M.V., Zaraiskiy N.P., Zaretskaya N.E., Eremenko E.A. The Chernobyl Signature in Western Abkhazia: Assessing 137Cs Deposition Variability and Applicability for evaluation sediment redistribution rates. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(4):127-138. https://doi.org/10.24057/2071-9388-2025-4097

Views: 24

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)