Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Projection Of Regional Climate Change For 2023–2064 In The Northern Part Of The Western Russian Arctic: A Support For Russian Railways

https://doi.org/10.24057/2071-9388-2025-4179

Abstract

Observed climate change has significantly impacted land transportation infrastructure, including roads, railways, bridges, seaport facilities, runways, and other components. It also affects traffic management and the efficiency of the transport system, influencing maintenance costs, travel safety, and traffic flow speeds. This issue is particularly critical for the Arctic Zone of the Russian Federation (AZRF), which is undergoing rapid economic development. Despite its expanding technological infrastructure, the region remains highly vulnerable to the impacts of climate change. A comprehensive assessment of these environmental risks is essential to ensure sustainable regional growth. Observed and projected changes in temperature and humidity generally have adverse effects on the condition and operation of transportation infrastructure. The primary types of negative impacts linked to climate change have already emerged, and these trends are expected to intensify by the mid-21st century. This paper analyses projected climate change in the Western Russian Arctic for 2023–2064. Using the CNRM-CM6-1-HR model from Phase 6 of the Coupled Model Intercomparison Project (CMIP6), it evaluates three socioeconomic scenarios (SSP1-2.6, SSP2-4.5, SSP5-8.5). The results are compiled in an electronic atlas mapping the projected distribution of air and soil temperature, total precipitation, wind speed, and snow cover thickness. Analysis of projection revealed non-linear climate model variations, where parameter values can overlap across scenarios and change rates can be unexpectedly higher in optimistic pathways. These projections, assessed against a 1980–1989 baseline, were visualised in regional maps to detail hydrometeorological changes for 2023–2064. This analysis of regional climate change is vital for sustainably managing railway infrastructure. The results highlight a heterogeneous Arctic climate and identify potentially hazardous phenomena expected to increase in frequency and impact.

About the Authors

Andrey G. Kostianoy
Geophysical Center of the Russian Academy of Sciences; Shirshov Institute of Oceanology of the Russian Academy of Sciences; S.Yu. Witte Moscow University
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296

Nakhimovskiy Ave, 36, Moscow, 117218

2nd Kozhukhovskiy Proyezd, 12, Moscow, 115432



Alexey D. Gvishiani
Geophysical Center of the Russian Academy of Sciences; Schmidt Institute of Physics of the Earth of the Russian Academy of Sciences
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296

Bolshaya Gruzinskaya St, 10, Moscow, 123242



Sergey A. Lebedev
Geophysical Center of the Russian Academy of Sciences
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296



Igor N. Rozenberg
Russian University of Transport
Russian Federation

Obraztsova St, 9, Bldg 9, Moscow, 127055



Roman I. Krasnoperov
Geophysical Center of the Russian Academy of Sciences
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296



Irina A. Dubchak
Russian University of Transport
Russian Federation

Obraztsova St, 9, Bldg 9, Moscow, 127055



Sofia A. Gvozdik
Geophysical Center of the Russian Academy of Sciences; Department of Earth and Environmental Sciences, University of Milano-Bicocca
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296

Piazza della Scienza, 4, Milano, 20126, Italy



Olga O. Shevaldysheva
Geophysical Center of the Russian Academy of Sciences
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296



Vladimir N. Sergeev
Geophysical Center of the Russian Academy of Sciences
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296



Julia I. Nikolova
Geophysical Center of the Russian Academy of Sciences
Russian Federation

Molodezhnaya Ulitsa, 3, Moscow, 119296



References

1. Andersson-Sköld Y., Nordin L., Nyberg, E. and Johannesson, M. (2021). A framework for identification, assessment and prioritization of climate change adaptation measures for roads and railways. International journal of environmental research and public health, 18(23), 12314. DOI: 10.3390/ijerph182312314

2. Baker C. J., Chapman L., Quinn A., and Dobney K. (2009). Climate change and the railway industry: A review. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(3), 519–528. DOI: 10.1243/09544062JMES1558.

3. Bartus T. (2014). ArcGIS Desktop resources. [online] ESRI. Available at: https://www.esri.com/en-us/arcgis/products/arcgis-desktop/resources [Accessed 1 Nov. 2022].

4. Blanutsa V. (2021). Spatial development of the Russian Arctic Zone: analysis of two strategies. Arctic: Ecology and Economy, 11(1), 111–121 (In Russian), DOI: 10.25283/2223-4594-20211-111-121. (In Russian)

5. Bocharov A.V., Kostianoy A.G., Lebedev S.A., Kolomeets L.I. and Kravchenko P.N. (2025). What SSP Global Climate Change Scenario is the Caspian Sea Region Following? Part 1: Air temperature analysis. Russian Journal of Earth Sciences (in press).

6. CNRM-CERFACS contribution to CMIP6, (2018). CNRM-CM6-1 model: Future projections (ScenarioMIP). [online] Available at: http://www.umr-cnrm.fr/cmip6/spip.php?article11 [Accessed 26 Mar. 2024].

7. ESGF, (2025). CMIP6 data holdings. [online] Available at: https://pcmdi.llnl.gov/CMIP6/ArchiveStatistics/esgf_data_holdings/print_view. html [Accessed 25 Apr. 2025].

8. Eyring V., Bony S., Meehl G. A., Senior C. A., Stevens B., Stouffer R. J. and Taylor K. E. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geoscientific Model Development, 9, 1937–1958. DOI: 10.5194/gmd-9-19372016.

9. Garmabaki A., Thaduri A., Famurewa S. and Kumar, U. (2021) Adapting Railway Maintenance to Climate Change. Sustainability, 13(24), 13856, DOI: 10.3390/su132413856

10. Gelaro R., McCarty W., Suárez M. J., et al. (2017). The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). Journal of Climate, 30(14), 5419–5454. DOI: 10.1175/JCLI-D-16-0758.1.

11. Golden Software Surfer, (2022). Golden Software. [online] Available at: https://www.goldensoftware.com/products/surfer [Accessed 1 Nov. 2022].

12. Government of the Russian Federation, (2021). Executive order No. 3363-r of 27 Nov. 2021 on the Transport strategy of the Russian Federation until 2030 with forecast up to 2035. [online] Available at: http://static.government.ru/media/files/7enYF2uL5kFZlOOpQhLl0nUT9 1RjCbeR.pdf [Accessed 29 Sep. 2025]

13. Government of the Russian Federation, (2022). Decree No. 2115-r of 01 Aug. 2022 on approval of the Development Plan of the Northern Sea Route for the period up to 2035. [online] Available at: http://government.ru/docs/46171/ [Accessed 17 Apr. 2025].

14. Grebenets V. I. and Isakov V. A. (2016). Deformations of roads and railways within the Norilsk-Talnakh transportation corridor and the stabilization methods. Earth’s Cryosphere, 20(2), 69-77 (In Russian).

15. Gvishiani A. D., Rozenberg I. N., Soloviev A. N., Kostianoy A. G., Gvozdik S. A., Serykh I. V., Krasnoperov R. I., Sazonov N. V., Dubchak I. A., Popov A. B., Kostianaia E. A. and Gvozdik G. A. (2023a). Electronic atlas of climatic changes in hydrometeorological parameters of the western part of the Russian Arctic for 1950–2021 as geoinformatic support of railway development. Applied Sciences, 13, 5278. DOI: 10.3390/app13095278.

16. Gvishiani A. D., Rozenberg I. N., Soloviev A. A., Krasnoperov R. I., Shevaldysheva O. O., Kostianoy A. G., Lebedev S. A., Dubchak I. A., Nikitina I. M., Gvozdik S. A., Sergeev V. N. and Gvozdik G. A. (2023b). Study of the impact of climatic changes in 1980–2021 on railway infrastructure in the Central and Western Russian Arctic based on Advanced Electronic Atlas of hydrometeorological parameters (2023b). Russian Journal of Earth Sciences, 23, ES5006. DOI: 10.2205/2023es000882.

17. Intergovernmental Panel on Climate Change (IPCC) (2021). Climate Change 2021: The Physical Science Basis IPCC. [online] Available at: https://www.ipcc.ch/report/ar6/wg1/ [Accessed 8 Apr. 2025].

18. Juckes M., Taylor K. E., Durack P. J., Lawrence B., Mizielinski M. S., Pamment A., Peterschmitt J.-Y., Rixen M. and Sénési S. (2020). The CMIP6 Data Request (DREQ, version 01.00.31). Geoscientific Model Development, 13, 201–224. DOI: 10.5194/gmd-13-201-2020.

19. Kostianaia E. A. and Kostianoy A. G. (2023). Railway transport adaptation strategies to climate change at high latitudes: A review of experience from Canada, Sweden and China. Transport and Telecommunication, 24(2), 180–194. DOI: 10.2478/ttj-2023-0016.

20. Kostianaia E. A., Kostianoy A. G., Scheglov M. A., Karelov A. I. and Vasileisky A. S. (2021). Impact of regional climate change on the infrastructure and operability of railway transport. Transport and Telecommunication, 22(2), 183–195.

21. Kostianoy A. G., Gvishiani A. D., Rozenberg I. B., Krasnoperov R. I., Gvozdik S. A., Lebedev S. A., Nikitina I. M., Dubchak I. A., Shevaldysheva O. O., Sergeev V. N. and Gvozdik G. A. (2025). Geoinformation analysis of regional climatic changes in the Central and Western Russian Arctic for railway development. Russian Journal of Earth Sciences, 25, ES1005. DOI: 10.2205/2025es000956.

22. Kriging interpolation method, (2023). Desktop ArcGIS. [online] Available at: https://desktop.arcgis.com/en/arcmap/10.3/tools/3danalyst-toolbox/how-kriging-works.htm [Accessed 12 May 2025].

23. Krylov A. A., Rukavishnikova D. D., Novikov M. A., Baranov B. V., Medvedev I. P., Kovachev S. A., Lobkovsky L. I. and Semiletov I. P. (2024). The main geohazards in the Russian sector of the Arctic Ocean. Journal of Marine Science and Engineering, 12(12), 2209. DOI: 10.3390/jmse12122209.

24. Lemenkova P. (2020). GEBCO Gridded Bathymetry Data. [online] Available at: https://www.gebco.net/data_and_products/gridded_bathymetry_data/grid_production/ [Accessed 3 Nov. 2022].

25. O’Neill B. C., Tebaldi C., van Vuuren D. P., Eyring V., Friedlingstein P., Hurtt G., Knutti R., Kriegler E., Lamarque J.-F., Lowe J., Meehl G. A., Moss R., Riahi K. and Sanderson B. M. (2016). The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geoscientific Model Development, 9, 3461–3482, DOI: 10.5194/gmd-9-3461-2016.

26. President of the Russian Federation, (2020a). Decree No. 164 of 05 Mar. 2020 on the Fundamentals of the State Policy of the Russian Federation in the Arctic until 2035. [online] Available at: http://www.kremlin.ru/acts/bank/45255 [Accessed 17 Apr. 2025].

27. President of the Russian Federation, (2020b). Decree No. 645 of 26 Oct. 2020 on the Strategy for the Development of the Arctic Zone of the Russian Federation and Ensuring National Security for the Period until 2035. [online] Available at: http://www.kremlin.ru/acts/bank/45972 [Accessed 17 Apr. 2025].

28. Romanenko F. A. and Shilovtseva O. A. (2016). Geomorphological processes in the mountains of the Kola Peninsula and climate change. Vestnik Moskovskogo Universiteta, Series 5: Geography, 6, 78–86, (In Russian).

29. Samset B. H., Zhou C., Fuglestvedt J. S., Lund M. T., Marotzke J. and Zelinka M. D. (2023). Steady global surface warming from 1973 to 2022, but an increased warming rate after 1990. Communications Earth & Environment, 4, 400, DOI: 10.1038/s43247-023-01061-4.

30. Semenov S. M. and Gladilshchikova A. A. (2022). Scenarios of anthropogenic changes in the climate system in the XXI century. Fundamental and Applied Climatology, 8(1), 75–106 (In Russian), DOI: 10.21513/2410-8758-2022-1-75-106.

31. Serykh I. V. and Tolstikov A. V. (2022). Climate change in the western part of the Russian Arctic in 1980–2021. Part 2. Soil temperature, snow, and humidity. Problems of Arctic and Antarctic Research, 68(4), DOI: 10.30758/0555-2648-2022-68-3-258-277.

32. Si Z., Li. S., Huang L. and Chen Y. (2010). Visualization programming for batch processing of contour maps based on VB and Surfer software. Advances in Engineering Software, 41(7–8), 962–965.

33. Smirnov A. Yu. (2025). Northern Sea Route: output and prospects. Arctic: Ecology and Economy, 15(1), 109–118, (In Russian), DOI: 10.25283/2223-4594-2025-1-109-118.

34. The International Institute for Applied Systems Analysis (IIASA) and Russian Academy of Sciences (RAS), (2002). Land Resources of Russia. [online] Available at: http://www.iiasa.ac.at/Research/FOR/russia_cd/download.htm [Accessed 3 Nov. 2022].

35. Third Assessment Report on Climate Change and Its Consequences on the Territory of the Russian Federation: General Summary. Roshydromet (2022). St. Petersburg: Science-Intensive Technologies. 124 p., (In Russian).

36. Tolstykh M. A. (2016). Global atmosphere models: current state and development plans. Proceedings of the Hydrometeorological Research Center of the Russian Federation, 359, 5–32, (In Russian).

37. Yakubovich A. N. and Yakubovich I. A. (2019). Forecasting the impact of climatic changes on the functionality of the transport infrastructure of the permafrost zone in Russia. Intellect. Innovation. Investments, 1, 104–110, (In Russian).

38. Yang C. S., Kao S. P., Lee F. B. and Hung P. S. (2004). Twelve different interpolation methods: A case study of Surfer 8.0. In Proceedings of the XXth ISPRS Congress, Vol. 35, pp. 778–785.


Review

For citations:


Kostianoy A.G., Gvishiani A.D., Lebedev S.A., Rozenberg I.N., Krasnoperov R.I., Dubchak I.A., Gvozdik S.A., Shevaldysheva O.O., Sergeev V.N., Nikolova J.I. Projection Of Regional Climate Change For 2023–2064 In The Northern Part Of The Western Russian Arctic: A Support For Russian Railways. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(4):61-79. https://doi.org/10.24057/2071-9388-2025-4179

Views: 58

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)