Renewable Energy Firms In Transition: Environmental Returns And Policy Synergies Under Saudi Vision 2030
https://doi.org/10.24057/2071-9388-2025-4028
Abstract
We examine how renewable energy strategies under Saudi Arabia’s Vision 2030 drive environmental sustainability in fossil fuel-dependent economies. The study analysed data from 42 firms (2012–2023) using the Generalised Method of Moments (GMM) and Impulse Response Functions (IRFs). Our findings indicate that a 1% increase in clean energy investment results in a 6.3–8.1% reduction in climate emissions and a 10.2–16.3% decrease in water challenges. A 1% increase in clean energy use lowers emissions by 5.4–7.6% and water stress by 3.2–11.4%. Policy integration amplifies outcomes. Oil-sector firms leverage scale for renewable projects while non-oil sectors face pressures from oil price volatility. IRFs confirm sustained environmental gains from renewable adoption. The study advocates integrated policies, including subsidy reallocation, lowwater renewables, and oil-sector engagement, to align economic diversification with sustainability. It also emphasises the need to address agricultural water inefficiencies and industrial energy intensity.
About the Authors
Mohammed AlharithiSaudi Arabia
Bandar St, Al Hulwah, 16524, Al-Kharj
Chokri Zehri
Saudi Arabia
Bandar St, Al Hulwah, 16524, Al-Kharj
References
1. Apergis N. and Payne J.E. (2010). Renewable energy consumption and economic growth: Evidence from a panel of OECD countries. Energy Policy, 38(1), 656–660. DOI: 10.1016/j.enpol.2009.09.002
2. Alrashed M., Nikolaidis T., Pilidis P., Alrashed W. and Jafari S. (2020). Economic and environmental viability assessment of NASA’s turboelectric distribution propulsion. Energy Reports, 6, 1685–1695. DOI: 10.1016/j.egyr.2020.06.016
3. Alshehry A.S., Alqahtani M. and Belloumi M. (2021). Environmental challenges and energy transitions in GCC economies. Energy Policy, 158, 112561. DOI: 10.1016/j.enpol.2021.112561
4. Brunnschweiler C.N. (2010). Finance for renewable energy: An empirical analysis of developing and transition economies. Environment and Development Economics, 15(3), 241–274. DOI: 10.1017/S1355770X1000001X
5. Coady D., Parry I., Sears L. and Shang B. (2019). How large are global energy subsidies? World Development, 91, 11–27. DOI: 10.1016/j.worlddev.2016.10.004
6. Farzanegan M.R. and Markwardt G. (2018). Development and pollution in the Middle East and North Africa: Democracy matters. Journal of Policy Modeling, 40(2), 350–374. DOI: 10.1016/j.jpolmod.2018.01.010
7. Freeman R.E. (1984). Strategic management: A stakeholder approach. Boston: Pitman.
8. Gleick P.H. (2014). Water, drought, climate change, and conflict in Syria. Weather, Climate, and Society, 6(3), 331–340. DOI: 10.1175/WCAS-D-13-00059.1
9. Hertog S. (2022). Industrial diversification and energy dependency in the Gulf. Oxford: Oxford University Press.
10. Horbach J. (2008). Determinants of environmental innovation—New evidence from German panel data sources. Research Policy, 37(1), 163–173. DOI: 10.1016/j.respol.2007.08.004
11. Johnstone N., Haščič I. and Popp D. (2010). Renewable energy policies and technological innovation: Evidence based on patent counts. Environmental and Resource Economics, 45(1), 133–155. DOI: 10.1007/s10640-009-9309-1
12. König W., Eltrop L. and Schneider M. (2013). Sustainability transitions in energy systems: The role of incumbent firms. Ecological Economics, 94, 292–306. DOI: 10.1016/j.ecolecon.2013.08.005
13. Krane J. (2019). Energy security and climate policy in the Gulf. Cambridge: Cambridge University Press.
14. Lanoie P., Laurent-Lucchetti J., Johnstone N. and Ambec S. (2011). Environmental policy, innovation and performance: New insights on the Porter Hypothesis. Journal of Economics & Management Strategy, 20(3), 803–842. DOI: 10.1111/j.1530-9134.2011.00301.x
15. Meckling J. and Hughes L. (2018). Global interdependence in clean energy transitions. Business and Politics, 20(4), 467–491. DOI: 10.1017/bap.2018.19
16. Ntanos S., Kyriakopoulos G.L., Arabatzis G., Palios V. and Chalikias M. (2018). Environmental behavior of secondary education students: A case study at central Greece. Sustainability, 10(5), 1663. DOI: 10.3390/su10051663
17. Porter M.E. and van der Linde C. (1995). Toward a new conception of the environment-competitiveness relationship. Journal of Economic Perspectives, 9(4), 97–118. DOI: 10.1257/jep.9.4.97
18. Ross M.L. (2012). The oil curse: How petroleum wealth shapes the development of nations. Princeton: Princeton University Press.
19. Sadorsky P. (2009). Renewable energy consumption and income in emerging economies. Energy Policy, 37(10), 4021–4028. DOI: 10.1016/j.enpol.2009.05.003
20. Sadorsky P. (2012). Time-series analysis in energy economics. Energy Economics, 34(3), 581–589. DOI: 10.1016/j.eneco.2011.10.013
21. Spang E.S., Moomaw W.R., Gallagher K.S., Kirshen P.H. and Marks D.H. (2014). The water consumption of energy production: An international comparison. Environmental Research Letters, 9(10), 105002. DOI: 10.1088/1748-9326/9/10/105002
22. Taghizadeh-Hesary F., Yoshino N. and Phoumin H. (2021). Analyzing the characteristics of green bond markets to facilitate green finance in the post-COVID-19 world. Sustainability, 13(10), 5719. DOI: 10.3390/su13105719
23. Waddock S.A. and Graves S.B. (1997). The corporate social performance-financial performance link. Strategic Management Journal, 18(4), 303–319. DOI: 10.1002/(SICI)1097-0266(199704)18:4<303::AID-SMJ869>3.0.CO;2-G
24. Wüstenhagen R. and Menichetti E. (2012). Strategic choices for renewable energy investment: Conceptual framework and opportunities for further research. Energy Policy, 40, 1–10. DOI: 10.1016/j.enpol.2011.06.050
Review
For citations:
Alharithi M., Zehri Ch. Renewable Energy Firms In Transition: Environmental Returns And Policy Synergies Under Saudi Vision 2030. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(4):48-60. https://doi.org/10.24057/2071-9388-2025-4028
JATS XML
































