Snow Cover Pollution By Potentially Toxic Elements In Small And Medium-Sized Industrial Cities: Case Of Sverdlovsk Region, Russia
https://doi.org/10.24057/2071-9388-2025-3746
Abstract
This study aims to develop and validate a method for assessing urban air pollution by analysing undisturbed snow cover in residential areas of small and medium-sized industrial cities in Sverdlovsk Region, Russia: Kachkanar, Serov, Verkhnyaya Pyshma, and Alapaevsk. Snow samples were collected in each city.
The proposed approach is based on the analysis of the most contaminated solid fraction of snow (particles >2 µm and filtrate). This method has shown effectiveness in identifying pollutants and their sources. It is also more cost-efficient and offers better material accessibility than the approach that analyses both dissolved (<0.45 µm) and suspended (>0.45 µm) snow phases. The balanced set of qualitative and quantitative indicators includes the physical and chemical properties of snow, the accumulation intensity of PTEs, the calculation of indices (Igeo, EF, PI, PIsum, PIavg, and PINemerow), dust load, and geochemical associations.
Snow’s physical and chemical properties were influenced by natural conditions. Low mineralisation and suspended solids were mostly composed of calcium and magnesium bicarbonates and sulfates. Snow pH was slightly alkaline in Serov and mildly alkaline in other cities.
Metallurgical and mining cities showed higher pollution according to the indices: elevated V and Fe in Kachkanar, Cr in Serov, Cu and As in Verkhnyaya Pyshma. Kachkanar was the most polluted city (PIsum – 154, PINemerow – 12), while Serov and Verkhnyaya Pyshma were also significantly polluted with similar PIsum and PIavg values (66 and 4.2, respectively) and PINemerow values (5.1 and 7.2, respectively). Geochemical associations reflected local industrial profiles. Dust load ranged from 27 to 163 mg/m2/day, peaking in Kachkanar.
The collected data indicate current atmospheric pollution in the studied cities. This method proved effective for assessing urban air pollution and is recommended for environmental monitoring in other industrial regions.
Keywords
About the Authors
Andrew V. ShevchenkoRussian Federation
620108, Ekaterinburg
Andrian A. Seleznev
Russian Federation
620108, Ekaterinburg
Vitaly S. Glukhov
Russian Federation
620108, Ekaterinburg
Ilia V. Yarmoshenko
Russian Federation
620108, Ekaterinburg
Georgy P. Malinovsky
Russian Federation
620108, Ekaterinburg
Natali V. Ivanchukova
Russian Federation
620108, Ekaterinburg
References
1. Adamiec E., Wieszała R., Strzebońska M., Jarosz-Krzemińska E. (2013). An attempt to identify traffic related elements in snow. Geology Geophysics & Environment, 39(4), 317, DOI: 10.7494/geol.2013.39.4.317.
2. Alves C., Vicente A., Calvo A., Baumgardner D., Amato F., Querol X., Pio C., Gustafsson M. (2019). Physical and chemical properties of non-exhaust particles generated from wear between pavements and tyres. Atmospheric Environment, 224, 117252, DOI: 10.1016/j.atmosenv.2019.117252.
3. Carlsson A., Centrell P., Oberg G. Studded tyres. Socio-economic calculations. Linköping: Statens vägoch transportforskningsinstitut.
4. Chen X., Zhang L., Huang J., Song F., Zhang L., Qian Z., Trevathan E. (2016). Long-term exposure to urban air pollution and lung cancer mortality: A 12-year cohort study in Northern China. The Science of the Total Environment, 571, 855-861, DOI: 10.1016/j.scitotenv.2016.07.064.
5. Engelhard C., De Toffol S., Lek I., Rauch W., Dallinger R. (2007). Environmental impacts of urban snow management – The alpine case study of Innsbruck. The Science of the Total Environment, 382(2-3), 286-294, DOI: 10.1016/j.scitotenv.2007.04.008.
6. Grebenshchikova V. I., Efimova N. V., Doroshkov A. A. (2017). Chemical composition of snow and soil in Svirsk city (Irkutsk Region, Pribaikal’e). Environmental Earth Sciences, 76(20), DOI: 10.1007/s12665-017-7056-0.
7. Guo P., Tian W., Li H., Zhang G., Li J. (2020). Global characteristics and trends of research on construction dust: based on bibliometric and visualized analysis. Environmental Science and Pollution Research, 27(30), 37773-37789, DOI: 10.1007/s11356-020-09723-y.
8. Indraratne S., Amarakoon I., Kumaragamage D., Lasisi A., Goltz D., Casson N. (2023). Loss of potentially toxic elements to snowmelt runoff from soils amended with alum, gypsum, and Epsom salt. Canadian Journal of Soil Science, 104(2), 156-165, DOI: 10.1139/cjss-2023-0073.
9. Jeong C., Wang J. M., Hilker N., Debosz J., Sofowote U., Su Y., Noble M., Healy R. M., Munoz T., Dabek-Zlotorzynska E., Celo V., White L., Audette C., Herod D., Evans, G. J. (2018). Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and nonexhaust emissions. Atmospheric Environment, 198, 55-69, DOI: 10.1016/j.atmosenv.2018.10.038.
10. Kaskaoutis D., Petrinoli K., Grivas G., Kalkavouras P., Tsagkaraki M., Tavernaraki K., Papoutsidaki K. (2023). Impact of peri-urban forest fires on air quality and aerosol optical and chemical properties: The case of the August 2021 wildfires in Athens, Greece. The Science of the Total Environment, 907, 168028, DOI: 10.1016/j.scitotenv.2023.168028.
11. Kondrat’ev I. I., Mukha D. E., Boldeskul A. G., Yurchenko S. G., Lutsenko T. N. (2017). Chemical composition of precipitation and snow cover in the Primorsky krai. Russian Meteorology and Hydrology, 42(1), 64-70, DOI: 10.3103/s1068373917010083.
12. Kosheleva N. E., Sycheva D. G., Kasimov N. S. (2024). Geochemistry of snow cover within the territory of the Lomonosov Moscow State University. Lomonosov Geography Journal, 79(5), 3-1, DOI: 10.55959/msu0579-9414.5.79.5.1.
13. Kuoppamäki K., Setälä H., Rantalainen A., Kotze D. J. (2014). Urban snow indicates pollution originating from road traffic. Environmental Pollution, 195, 56-63, DOI: 10.1016/j.envpol.2014.08.019.
14. Lak A., Vahabi S., Sahar H. E. (2024). Resilience in the dust: The Influence of Sand and Dust Storms (SDSs) on residents’ perception of urban green spaces: a Qualitative study. International Journal of Disaster Risk Reduction, 108, 104572, DOI: 10.1016/j.ijdrr.2024.104572.
15. Lee Y., Lee P., Choi S., An M., Jang A. (2021). Effects of air pollutants on airway diseases. International Journal of Environmental Research and Public Health, 18(18), 9905, DOI: 10.3390/ijerph18189905.
16. Lukyanov A. I., Dakhova E. V., Mayorova L. P. (2022). Assessment of snow cover pollution by heavy metals as one of the methods of atmospheric air monitoring on the example of settlements in the Far East. RUDN Journal of Ecology and Life Safety, 30(3), 407-416, DOI: 10.22363/2313-2310-2022-30-3-407-416 (in Russian).
17. Moskovchenko D., Pozhitkov R., Zakharchenko A., Tigeev A. (2021). Concentrations of Major and Trace Elements within the Snowpack of Tyumen, Russia. Minerals, 11(7), 709, DOI: 10.3390/min11070709.
18. Moskovchenko D. V., Pozhitkov R., Minkina T., Sushkova S. (2022). Trace metals and polycyclic aromatic hydrocarbons in the snow cover of the city of Nizhnevartovsk (Russia). Research Square, DOI: 10.21203/rs.3.rs-2064341/v1.
19. Moskovchenko D. V., Pozhitkov R., Soromotin A. (2023). Snow contamination by heavy metals and metalloids in a polar town (a case study of Nadym, Russia). Research Square, DOI: https://doi.org/10.21203/rs.3.rs-3629334/v1.
20. Müller G. (1986). Schadstoffe in sedimenten-sedimente als schadstoffe. Mitteilungen der Österreichische Geologische Gesellschaft, 79, 107-126.
21. Opp C., Groll M., Abbasi H., Foroushani M. A. (2021). Causes and effects of sand and dust storms: What has past research taught us? A survey. Journal of Risk and Financial Management, 14(7), 326, DOI: 10.3390/jrfm14070326.
22. Pellecchia M., Papa G., Barbato M., Capitani G., Negri I. (2023). Origin of non-exhaust PM in cities by individual analysis of particles collected by honey bees (Apis mellifera). Environmental Pollution, 331, 121885, DOI: 10.1016/j.envpol.2023.121885.
23. Piscitello A., Bianco C., Casasso A., Sethi R. (2021). Non-exhaust traffic emissions: Sources, characterization, and mitigation measures. The Science of the Total Environment, 766, 144440, DOI: 10.1016/j.scitotenv.2020.144440.
24. Popovicheva, O., Diapouli, E., Chichaeva, M., Kosheleva, N., Kovach, R., Bitukova, V., Eleftheriadis, K., Kasimov, N. (2024). Aerosol characterization and peculiarities of source apportionment in Moscow, the largest and northernmost European megacity. The Science of the Total Environment, 918, 170315, DOI: 10.1016/j.scitotenv.2024.170315.
25. Qingjie G., Jun D., Yunchuan X., Qingfei W., Liqiang Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences, 19(3), 230-241, DOI: 10.1016/s1002-0705(08)60042-4.
26. Raaschou-Nielsen O., Andersen Z. J., Beelen R., Samoli E., Stafoggia M., Weinmayr G., Hoffmann B. (2013). Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The Lancet Oncology, 14(9), 813-822, DOI: 10.1016/s1470-2045(13)70279-1.
27. Reimann C., Filzmoser P., Garrett R. G. (2005). Background and threshold: critical comparison of methods of determination. The Science of the Total Environment, 346(1-3), 1-16, DOI: 10.1016/j.scitotenv.2004.11.023.
28. Sakai H., Sasaki T., Saito K. (1988). Heavy metal concentrations in urban snow as an indicator of air pollution. The Science of the Total Environment, 77(2-3), 163-174, DOI: 10.1016/0048-9697(88)90053-8.
29. Seleznev A., Shevchenko A., Malinovsky G., Ivanchukova N., Glukhov V., Hanfi M.Y. (2024). Assessment of the total amount of surface deposited sediments in small towns. Urban Science, 8(4), 178, DOI: 10.3390/urbansci8040178.
30. Seleznev A., Yarmoshenko I., Malinovsky G., Ilgasheva E., Baglaeva E., Ryanskaya A., Kiseleva D., Gulyaeva T. (2019). Snow-dirt sludge as an indicator of environmental and sedimentation processes in the urban environment. Scientific Reports, 9(1), DOI: 10.1038/s41598-01953793-z.
31. Szwed M., Kozłowski R. (2022). Snow cover as an indicator of dust pollution in the area of exploitation of rock materials in the Świętokrzyskie Mountains. Atmosphere, 13(3), 409, DOI: 10.3390/atmos13030409.
32. Novikova V. D., Talovskaya A. V., Yazikov, E. G. (2025). Dynamics of particulate load and chemical composition of snow cover in the area of thermal power and coke chemistry enterprises (case for the city of Kemerovo). Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, 336(3), 193-207, DOI: 10.18799/24131830/2025/3/4984.
33. Tariq S., Nawaz H., Mehmood U., Haq Z. U., Pata U. K., Murshed M. (2023). Remote sensing of air pollution due to forest fires and dust storm over Balochistan (Pakistan). Atmospheric Pollution Research, 14(2), 101674, DOI: 10.1016/j.apr.2023.101674.
34. Tiotiu A. I., Novakova P., Nedeva D., Chong-Neto H. J., Novakova S., Steiropoulos P., Kowal K. (2020). Impact of air pollution on asthma outcomes. International Journal of Environmental Research and Public Health, 17(17), 6212, DOI: 10.3390/ijerph17176212.
35. Vijayan A., Österlund H., Marsalek J., Viklander, M. (2024). Traffic-related metals in urban snow cover: A review of the literature data and the feasibility of filling gaps by field data collection. The Science of the Total Environment, 920, 170640, DOI: 10.1016/j.scitotenv.2024.170640.
36. Vlasov D., Vasil’chuk J., Kosheleva N., Kasimov N. (2020). Dissolved and suspended forms of metals and metalloids in snow cover of Megacity: Partitioning and deposition rates in Western Moscow. Atmosphere, 11(9), 907, DOI: 10.3390/atmos11090907.
37. Vorobievskaya E., Kirillov S., Sedova N., Slipenchuk M. (2022). Snow cover dust pollution in Murmansk and its suburbs. IOP Conference Series Earth and Environmental Science, 1010(1), 012012, DOI: 10.1088/1755-1315/1010/1/012012.
38. Watson A. Y., Bates R. R., Kennedy D. (1988). Assessment of human exposure to air pollution: methods, measurements, and models. Air Pollution, the Automobile, and Public Health. Washington (DC): National Academies Press, DOI: 10.17226/1033.
39. Yang H., Song X., Zhang Q. (2020). RS&GIS based PM emission inventories of dust sources over a provincial scale: A case study of Henan province, central China. Atmospheric Environment, 225, 117361, DOI: 10.1016/j.atmosenv.2020.117361.
40. Zhou Y., Zhao H., Lu Y., Bai X., Fu Z., Mao J., Tian H. (2024). Heterogeneous evolution and driving forces of multiple hazardous air pollutants and GHGs emissions from China’s primary aluminum industry. The Science of the Total Environment, 953, 176079, DOI: 10.1016/j.scitotenv.2024.176079.
Review
For citations:
Shevchenko A.V., Seleznev A.A., Glukhov V.S., Yarmoshenko I.V., Malinovsky G.P., Ivanchukova N.V. Snow Cover Pollution By Potentially Toxic Elements In Small And Medium-Sized Industrial Cities: Case Of Sverdlovsk Region, Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(4):6-18. https://doi.org/10.24057/2071-9388-2025-3746
JATS XML
































