Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

How Drones And Lidar Help In Counting Mangrove Trees: A Practical Approach

https://doi.org/10.24057/2071-9388-2025-3958

Abstract

Mangrove forests provide critical ecosystem services, including coastal protection, habitat for biodiversity, and carbon sequestration. Monitoring these ecosystems is essential for their conservation and sustainable management. This study was conducted on Pramuka Island, Indonesia, focusing on high-density Rhizophora stylosa vegetation. Data was collected using the DJI M300 RTK UAV equipped with the Zenmuse L1 LiDAR sensor, which generated a Canopy Height Model (CHM) and identified treetops. Various kernel sizes (3×3, 5×5, 9×9, 11×11, 21×21) and Local Maximum Filter (LMF) window sizes (0.5, 1, 3 meters) were applied to analyze mangrove tree density. The study found that the combination of a 3×3 kernel with a 0.5 meter window size yielded the best results, achieving the highest F-score and balancing precision and recall. However, despite the optimized settings, LiDAR still struggled to detect individual trees in dense mangrove stands, resulting in the underestimation of tree counts compared to field data. This highlights the challenges LiDAR faces in dense vegetation environments. The study emphasizes the need for optimized kernel and window size configurations for more accurate tree detection and calls for further development of LiDAR-based algorithms to improve detection in mangrove forests. Improved methodologies will enhance the effectiveness of mangrove forest conservation and management efforts.

About the Authors

Muhammad Rizki Nandika
Research Center for Oceanography, National Research and Innovation Agency, B. J. Habibie Science and Technology Area (KST)
Indonesia

Serpong, South Tangerang, 15314



Jeverson Renyaan
Research Center for Oceanography, National Research and Innovation Agency, B. J. Habibie Science and Technology Area (KST)
Indonesia

Serpong, South Tangerang, 15314



Bayu Prayudha
Research Center for Oceanography, National Research and Innovation Agency, B. J. Habibie Science and Technology Area (KST)
Indonesia

Serpong, South Tangerang, 15314



La Ode Alifatri
Research Center for Oceanography, National Research and Innovation Agency, B. J. Habibie Science and Technology Area (KST)
Indonesia

Serpong, South Tangerang, 15314



Herlambang Aulia Rachman
Department of Marine Science, University of Trunojoyo
Indonesia

Jl. Raya Telang, Bangkalan, 69112



Yaya Ihya Ulumuddin
Research Center for Oceanography, National Research and Innovation Agency, B. J. Habibie Science and Technology Area (KST)
Indonesia

Serpong, South Tangerang, 15314



Turissa Pragunanti Ilyas
Research Center for Geoinformatics, National Research and Innovation Agency
Indonesia

Jl. Cisitu, Bandung, 40135



Dony Kushardono
Research Center for Geoinformatics, National Research and Innovation Agency
Indonesia

Jl. Cisitu, Bandung, 40135



Martiwi Diah Setiawati
Research Center for Oceanography, National Research and Innovation Agency, B. J. Habibie Science and Technology Area (KST); United Nations University – Institute for the Advanced Study of Sustainability (UNU-IAS)
Indonesia

Serpong, South Tangerang, 15314

5-53-70 Jingumae, Shibuya-ku, Tokyo, 150-8925



References

1. Ahmadi S. A., Ghorbanian A., Golparvar F., Mohammadzadeh A. and Jamali S. (2022). Individual tree detection from unmanned aerial vehicle (UAV) derived point cloud data in a mixed broadleaf forest using hierarchical graph approach. European Journal of Remote Sensing, 55(1), pp.520-539, DOI: 10.1080/22797254.2022.2129095

2. Bakar N.A.A., Jaafar W.S.W.M., Maulud K.N.A., Kamarulzaman A.M.M., Saad S.N.M., Mohan M. (2024). Monitoring mangrove-based blue carbon ecosystems using UAVs: a review. Geocarto International, 39:1, 2405123, DOI: 10.1080/10106049.2024.2405123.

3. Balsi M., Esposito S., Fallavollita P. and Nardinocchi C. (2018). Single-tree detection in high-density LiDAR data from UAV-based survey. European Journal of Remote Sensing, 51(1), pp.679-692, DOI: 10.1080/22797254.2018.1474722.

4. Carugati L., Gatto B., Rastelli E., Lo Martire M., Coral C., Greco S. and Danovaro R. (2018). Impact of mangrove forests degradation on biodiversity and ecosystem functioning. Scientific Reports, 8, 13298, DOI: 10.1038/s41598-018-31683-0.

5. Diniz C., Cortinhas L., Nerino G., Rodrigues J., Sadeck L., Adami M. and Souza-Filho P.W.M. (2019). Brazilian mangrove status: Three decades of satellite data analysis. Remote Sensing, 11(7), p.808, DOI: 10.3390/rs11070808

6. Fatoyinbo T., Feliciano E.A., Lagomasino D., Lee S.K. and Trettin C. (2018). Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta. Environmental Research Letters, 13(2), p.025012, DOI: 10.1088/1748-9326/aa9f03.

7. Galvincio J.D., and Popescu S.C. (2016). Measuring individual tree height and crown diameter for mangrove trees with airborne LiDAR data. International Journal of Advanced Engineering, Management & Science, 2(5), pp.431-443.

8. Giri C. (2021). Recent advancement in mangrove forests mapping and monitoring of the world using earth observation satellite data. Remote Sensing, 13(4), p.563, DOI: 10.3390/rs13040563.

9. Giri C., Long J., Abbas S., Murali R.M., Qamer F.M., Pengra B. and Thau D. (2015). Distribution and dynamics of mangrove forests of South Asia. Journal of Environmental Management, 148, pp.101-111, DOI: 10.1016/j.jenvman.2014.01.020.

10. Glotfelty J.E. (1999). Automatic selection of optimal window size and shape for texture analysis. West Virginia University.

11. Gomroki M., Jafari M., Sadeghian, S. and Azizi Z. (2017). Application of intelligent interpolation methods for DTM generation of forest areas based on LiDAR data. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 85, pp.227-241, DOI: 10.1007/s41064-017-0025-0.

12. Green E.P., Clark C.D., Mumby P.J., Edwards A.J. and Ellis A.C. (1998). Remote sensing techniques for mangrove mapping. International journal of remote sensing, 19(5), pp.935-956, DOI: 10.1080/014311698215801.

13. Gupta K., Mukhopadhyay A., Giri S., Chanda A., Majumdar S.D., Samanta S., Mitra D., Samal R.N., Pattnaik A.K. and Hazra S., 2018. An index for discrimination of mangroves from non-mangroves using LANDSAT 8 OLI imagery. MethodsX, 5, pp.1129-1139, DOI: 10.1016/j.mex.2018.09.011

14. Himes-Cornell A., Pendleton L. and Atiyah P. (2018). Valuing ecosystem services from blue forests: A systematic review of the valuation of salt marshes, sea grass beds and mangrove forests. Ecosystem Services, 30, pp.36-48, DOI: 10.1016/j.ecoser.2018.01.006.

15. Hsu A.J., Kumagai J., Favoretto F., Dorian J., Martinez B.G., Aburto-Oropeza O. (2020). Driven by drones: Improving mangrove extent maps using high-resolution remote sensing. Remote Sensing, 12(23), p.3986, DOI: 10.3390/rs12233986.

16. Jones A.R., Raja Segaran R., Clarke K.D., Waycott M., Goh W.S. and Gillanders B.M. (2020). Estimating mangrove tree biomass and carbon content: a comparison of forest inventory techniques and drone imagery. Frontiers in Marine Science, 6, p.784, DOI: 10.3389/fmars.2019.00784.

17. Kasai K., Yanagisawa H. and Goto K. (2024). Quantification of the spatial distribution of individual mangrove tree species derived from LiDAR point clouds. Progress in Earth and Planetary Science, 11(1), p.2, DOI: 10.1186/s40645-024-00626-x.

18. Kim J., Popescu S.C., Lopez R.R., Ben Wu X., Silvy N.J. (2020). Vegetation mapping of No Name Key, Florida using lidar and multispectral remote sensing. International Journal of Remote Sensing, 41(24), pp.9469-9506, DOI: 10.1080/01431161.2020.1800125.

19. Korpela I. (2006). Geometrically accurate time series of archived aerial images and airborne lidar data in a forest environment. Silva Fennica, 40(1), p.109, DOI: 10.14214/sf.355.

20. Lassalle G., Ferreira M.P., La Rosa L.E.C., Scafutto R.D.P.M. and de Souza Filho C.R. (2023). Advances in multi-and hyperspectral remote sensing of mangrove species: A synthesis and study case on airborne and multisource spaceborne imagery. ISPRS Journal of Photogrammetry and Remote Sensing, 195, pp.298-312, DOI: 10.1016/j.isprsjprs.2022.12.003.

21. Li Q., Wong F.K.K., Fung T., Brown L.A. and Dash J. (2023). Assessment of active LiDAR data and passive optical imagery for double-layered mangrove leaf area index estimation: a case study in Mai Po, Hong Kong. Remote Sensing, 15(10), p.2551, DOI: 10.3390/rs15102551.

22. Lindberg E. and Hollaus M. (2012). Comparison of methods for estimation of stem volume, stem number and basal area from airborne laser scanning data in a hemi-boreal forest. Remote Sensing, 4(4), pp.1004-1023, DOI: 10.3390/rs4041004.

23. Lisiewicz M., Kamin´ska A. and Steren´czak K. (2022). Recognition of specified errors of Individual Tree Detection methods based on Canopy Height Model. Remote Sensing Applications: Society and Environment, 25, p.100690, DOI: 10.1016/j.rsase.2021.100690.

24. Mohan M., Silva C.A., Klauberg C., Jat P., Catts G., Cardil A., Hudak A.T. and Dia M. (2017). Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests, 8(9), p.340, DOI: 10.3390/f8090340.

25. Mohan M., Leite R.V., Broadbent E.N., Wan Mohd Jaafar W.S., Srinivasan S., Bajaj S., Dalla Corte A.P., do Amaral C.H., Gopan G., Saad S.N.M. and Muhmad Kamarulzaman A.M. (2021). Individual tree detection using UAV-lidar and UAV-SfM data: A tutorial for beginners. Open Geosciences, 13(1), pp.1028-1039, DOI: 10.1515/geo-2020-0290.

26. Mumby P.J., Edwards A.J., Ernesto Arias-Gonz´alez J., Lindeman K.C., Blackwell P.G., Gall A., Gorczynska M.I., Harborne A.R., Pescod C.L., Renken H. and Wabnitz, C.C. (2004). Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature, 427(6974), pp.533-536, DOI: 10.1038/nature02286.

27. Pertille C.T., Gomes K.M.A., Veras H.F.P., Mohan M., Sanquetta C.R., Behling A. and Dalla Corte A.P. (2024). Effects of flight and smoothing parameters of number of trees with aerial imagery in a native Brazilian atlantic forest remnant. CERNE, 30(1), DOI: 10.1590/01047760202330013338.

28. Powers D.M. (2011). Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Prayudha B., Ulumuddin Y.I., Siregar V., Agus S.B., Prasetyo L.B., Avianto P. and Ramadhani M.R. (2024). Enhanced mangrove index: A spectral index for discrimination understorey, nypa, and mangrove trees. MethodsX, 12, p.102778, DOI: 10.1016/j.mex.2024.102778.

29. Qiu P., Wang D., Zou X., Yang X., Xie G., Xu S. and Zhong Z. (2019). Finer resolution estimation and mapping of mangrove biomass using UAV LiDAR and worldview-2 data. Forests, 10(10), p.871, DOI: 10.3390/f10100871.

30. Quan Y., Li M. and Wang B. (2021). Comparison and evaluation of different pit-filling methods for generating high-resolution canopy height model using UAV laser scanning data. Remote Sensing, 13, p.2239, DOI: 10.3390/rs13122239.

31. Rajpar M.N. and Zakaria M. (2014). Mangrove fauna of Asia. In: Mangrove ecosystems of Asia: Status, challenges and management strategies, pp.153-197, DOI: 10.1007/978-1-4614-8582-78.

32. Roussel J.R., Auty D., Coops N.C., Tompalski P., Goodbody T.R., Meador A.S., Bourdon J.F., De Boissieu F. and Achim A. (2020). lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sensing of Environment, 251, p.112061, DOI: 10.1016/j.rse.2020.112061.

33. Sahu S.C., Suresh H.S., Murthy I.K. and Ravindranath N.H. (2015). Mangrove area assessment in India: Implications of loss of mangroves. J. Earth Sci. Clim. Change, 6(5), p.280, DOI: 10.4172/2157-7617.1000280.

34. Saini O., Bhardwaj A. and Chatterjee R.S. (2020), November. The Potential of L-Band UAVSAR Data for the Extraction of Mangrove Land Cover Using Entropy and Anisotropy Based Classification. In Proceedings, 46(1), p.21, DOI: 10.3390/ecea-5-06673.

35. Salum R.B., Souza-Filho P.W.M., Simard M., Silva C.A., Fernandes M.E., Cougo M.F., do Nascimento Junior W. and Rogers K. (2020). Improving mangrove above-ground biomass estimates using LiDAR. Estuarine, Coastal and Shelf Science, 236, p.106585, DOI: 10.1016/j.ecss.2020.106585.

36. Sharifi A., Felegari S. and Tariq A. (2022). Mangrove forests mapping using Sentinel-1 and Sentinel-2 satellite images. Arabian Journal of Geosciences, 15(20), p.1593, DOI: 10.1007/s12517-022-10867-z.

37. Silva C.A., Hudak A.T., Vierling L.A., Loudermilk E.L., O’Brien J.J., Hiers J.K., Jack S.B., Gonzalez-Benecke C., Lee H., Falkowski M.J. and Khosravipour A. (2016). Imputation of individual longleaf pine (Pinus palustris Mill.) tree attributes from field and LiDAR data. Canadian Journal of Remote Sensing, 42(5), pp.554-573, DOI: 10.1080/07038992.2016.1196582.

38. Suardana A.M.A.P., Anggraini N., Nandika M.R., Aziz K., As-Syakur A.R., Ulfa A., Wijaya A.D., Prasetio W., Winarso G. and Dewanti R. (2023). Estimation and mapping above-ground mangrove carbon stock using sentinel-2 data derived vegetation indices in Benoa Bay of Bali Province, Indonesia. Forest and Society, 7(1), pp.116-134, DOI: 10.24259/fs.v7i1.22062.

39. Tamimi R. and Toth C. (2024). Accuracy Assessment of UAV LiDAR Compared to Traditional Total Station for Geospatial Data Collection in Land Surveying Contexts. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, pp.421-426, DOI: 10.5194/isprs-archives-XLVIII-2-2024- 421-2024, 2024.

40. Tanhuanpaa T., Yu X., Luoma V., Saarinen N., Raisio J., Hyyppa J., Kumpula T. and Holopainen M. (2019). Effect of canopy structure on the performance of tree mapping methods in urban parks. Urban Forestry & Urban Greening, 44, p.126441, DOI: 10.1016/j.ufug.2019.126441.

41. Tian Y., Huang H., Zhou G., Zhang Q., Tao J., Zhang Y. and Lin J. (2021). Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Science of the Total Environment, 781, p.146816, DOI: 10.1016/j.scitotenv.2021.146816.

42. Tian Y., Huang H., Zhou G., Zhang Q., Xie X., Ou J., Zhang Y., Tao J. and Lin J. (2023). Mangrove biodiversity assessment using UAV LiDAR and hyperspectral data in China’s Pinglu canal estuary. Remote Sensing, 15(10), p.2622, DOI: 10.3390/rs15102622.

43. Tran T.V., Reef R. and Zhu X. (2022). A review of spectral indices for mangrove remote sensing. Remote Sensing, 14(19), p.4868, DOI: 10.3390/rs14194868.

44. Wannasiri W., Nagai M., Honda K., Santitamnont P. and Miphokasap P. (2013). Extraction of mangrove biophysical parameters using airborne LiDAR. Remote Sensing, 5(4), pp.1787-1808. DOI: 10.3390/rs5041787.

45. Wang D., Wan B., Qiu P., Zuo Z., Wang R. and Wu X. (2019). Mapping height and aboveground biomass of mangrove forests on Hainan Island using UAV-LiDAR sampling. Remote Sensing, 11(18), p.2156, DOI: 10.3390/rs11182156.

46. Wang D., Wan B., Qiu P., Tan X. and Zhang Q. (2022). Mapping mangrove species using combined UAV-LiDAR and Sentinel-2 data: Feature selection and point density effects. Advances in Space Research, 69(3), pp.1494-1512, DOI: 10.1016/j.asr.2021.11.020.

47. Wijaya M.S., Kamal M., Widayani P. and Arjasakusuma S. (2023). Classification of Mangrove Vegetation Structure using Airborne LiDAR in Ratai Bay, Lampung Province, Indonesia. Geoplanning: Journal of Geomatics and Planning, 10(2), pp.123-134, DOI: 10.14710/geoplanning.10.2.123-134.

48. Yan Y., Lei J., Jin J., Shi S. and Huang Y. (2024). Unmanned Aerial Vehicle Light Detection and Ranging-Based Individual Tree Segmentation. Eucalyptus spp. Forests: Performance and Sensitivity. Forests, 15(1), p.209, DOI: 10.3390/f15010209.

49. Yin D. and Wang L. (2019). Individual mangrove tree measurement using UAV-based LiDAR data: Possibilities and challenges. Remote Sensing of Environment, 223, pp.34-49, DOI: 10.1016/j.rse.2018.12.034.

50. Yin D., Wang L., Lu Y. and Shi C. (2024). Mangrove tree height growth monitoring from multi-temporal UAV-LiDAR. Remote Sensing of Environment, 303, p.114002, DOI: 10.1016/j.rse.2024.114002.


Review

For citations:


Rizki Nandika M., Renyaan J., Prayudha B., Alifatri L., Rachman H., Ulumuddin Ya., Ilyas T.P., Kushardono D., Setiawati M.D. How Drones And Lidar Help In Counting Mangrove Trees: A Practical Approach. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(3):88-98. https://doi.org/10.24057/2071-9388-2025-3958

Views: 7


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)