Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Radiation Parameters Of The Peat Bog Due To Permafrost Conditions Variations: A Case Study Of The Oma River Basin Of The Nenets Autonomous Okrug, Northwest Of Russia

https://doi.org/10.24057/2071-9388-2025-3762

Abstract

The purpose of this article is to examine the distribution of natural radionuclides as well as the gamma radiation flux due to the variations of soil seasonal thawing depth. The study was conducted at a lumpy peat bog located within the catchment area of the Oma River, located within the Nenets Autonomous Okrug of Russia. The site was selected due to the presence of an active layer (AL) with varying depths of thawing, as well as the warming effect of the river. This feature enabled an initial assessment of the impact of thawing depth on radon flux, gamma radiation, and the distribution of other natural radionuclides along the peat profile. Field observations revealed that permafrost deposits act as a barrier to the intake of 222Rn from geological layers. The relationship between alterations in radiation parameters (gamma radiation flux, radon flux density (RFD), radionuclide composition of peat) and the thickness of the AL has been established. An increase in gamma radiation levels and RFD has been observed in areas exhibiting maximum seasonal thawing of the seasonally thawed layer. The correlation coefficients were found to be 0.70 and 0.83, respectively. The analysis of peat profiles in diverse permafrost settings revealed that in regions exhibiting deeper thawing of soil, there is an abundance of 210Pb relative to the concentration of its progenitor radionuclide, 226Ra. The observed excess of 210Pb may be attributed to radon flux from deeper geological layers.

About the Authors

Andrey V. Puchkov
N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
Russian Federation

109 Severnoj Dviny Emb., Arkhangelsk, 163000



Evgeny Yu. Yakovlev
N. Laverov Federal Centre for Integrated Arctic Research of the Ural Branch of Russian Academy of Sciences
Russian Federation

109 Severnoj Dviny Emb., Arkhangelsk, 163000



References

1. Afonin A. and Korchunov A. (2013). Optimizing block parameters measurements for monitoring radon, thoron and their daughter products in various environments. ANRI, 1, 9-11. (in Russian).

2. Baskaran M. (2016). Radon: A tracer for geological, geophysical and geochemical studies. Basel: Springer, DOI: 10.1007/978-3-319-21329-3.

3. Buldovicz S. N., Khilimonyuk V. Z., Bychkov A. Y., Ospennikov E. N., Vorobyev S. A., Gunar A. Y., Gorshkov E. I., Chuvilin E. M., Cherbunina M. Y., Kotov P. I., Lubnina N. V., Motenko R. G. and Amanzhurov R. M. (2018). Cryovolcanism on the Earth: Origin of a Spectacular Crater in the Yamal Peninsula (Russia). Scientific Reports, 8(1), DOI: 10.1038/s41598-018-31858-9.

4. Chuvilin E.M., Yakushev V.Sand Perlova E.V. (2000). Gas and gas hydrates in the permafrost of Bovanenkovo gas fi eld, Yamal Peninsula, West Siberia. Polarforschung, 68, 215-219.

5. Cwanek A. and Łokas E. (2022). Deposition chronologies in a peat bog from Spitsbergen (High Arctic) using the 210Pb dating method. Polish Polar Research, 43(4), DOI: 10.24425/ppr.2022.143310.

6. Daraktchieva Z., Wasikiewicz J. M., Howarth C. B. and Miller C. A. (2021). Study of baseline radon levels in the context of a shale gas development. Science of The Total Environment, 753, 141952, DOI: 10.1016/j.scitotenv.2020.141952.

7. Evangelista H. and Pereira, E. B. (2002). Radon flux at King George Island, Antarctic Peninsula. Journal of Environmental Radioactivity, 61(3), DOI: 10.1016/S0265-931X(01)00137-0.

8. Giustini F., Ciotoli G., Rinaldini A., Ruggiero L. and Voltaggio M. (2019). Mapping the geogenic radon potential and radon risk by using Empirical Bayesian Kriging regression: A case study from a volcanic area of central Italy. Science of the Total Environment, 661, 449-464, DOI: 10.1016/j.scitotenv.2019.01.146.

9. Glover P. W. J. and Blouin, M. (2022). Increased Radon Exposure From Thawing of Permafrost Due To Climate Change. Earth’s Future, 10(2), DOI: 10.1029/2021EF002598.

10. Iglovsky S. A., Shvartsman Y. G. and Bolotov I. N. (2010). Cryolithozone of the Dvinsko-Mezenskaya Plain and Kanin Peninsula. Ekaterinburg: FCIARCTIC UrB RAS (in Russian).

11. Klimshin A.V., Kozlova I.A., Rybakov E.N. and Lukovskoy M.Yu. (2010). Effect of freezing the surface layer of soil on the radon transport. KRAUNTS Bulletin. Series: Earth Sciences, 16(2), 146-151 (in Russian with English summary).

12. Koptev D.P. (2020). Norilsk spill: lessons and consequences. Drilling and Oil, (7-8), 3-9. (in Russian with English summary).

13. Kriauciunas V. V., Iglovsky S. A., Kuznetsova I. A., Shakhova E. V., Bazhenov A. V. and Mironenko K. A. (2018). Spatial distribution of natural and anthropogenic radionuclides in the soils of Naryan–Mar. Arctic Environmental Research, 18 (3), 82-89, DOI: 10.3897/issn2541–8416.2018.18.3.82.

14. Levin V. E. and Khamyanov L. P. (1973). Registration of ionising radiation. Moscow: Atomizdat. (in Russian).

15. Lorenzo-Gonzalez M., Ruano-Ravina A., Torres-Duran M., Kelsey K. T., Provencio M., Parente-Lamelas I., Piñeiro-Lamas M., Varela-Lema L., Perez-Rios M., Fernandez-Villar A. and Barros-Dios J. M. (2020). Lung cancer risk and residential radon exposure: A pooling of case-control studies in northwestern Spain. Environmental Research, 189, DOI: 10.1016/j.envres.2020.109968.

16. Maier A., Wiedemann J., Rapp F., Papenfuß F., Rödel F., Hehlgans S., Gaipl U. S., Kraft G., Fournier C. and Frey B. (2021). Radon exposure-therapeutic effect and cancer risk. International Journal of Molecular Sciences, 22(1), DOI: 10.3390/ijms22010316.

17. Miklyaev P. S. and Petrova T. B. (2010). The study of radon emanation in clay. Geoecology. Engineering geology, hydrogeology, geocryology, (1), 13-22, (in Russian).

18. Petrova T. and Miklyaev P. (2020). Variations of indoor radon concentration in traditional russian rural wooden houses. Radiation Protection Dosimetry, 191(2), DOI: 10.1093/rpd/ncaa156.

19. Pokrovsky O. S., Manasypov R. M., Pavlova O. A., Shirokova, L. S. and Vorobyev S. N. (2022). Carbon, nutrient and metal controls on phytoplankton concentration and biodiversity in thermokarst lakes of latitudinal gradient from isolated to continuous permafrost. Science of the Total Environment, 806, DOI: 10.1016/j.scitotenv.2021.151250.

20. Portman A. I. and Potemkin A. M. (2014). Gas-hydrate method of radon immobilisation ANRI, 4(79), 61-64 (in Russian).

21. Prokhorenko N. B. (2013). Classification and composition of peat. Kazan: Kazan (Volga Region) Federal University (in Russian).

22. Puchkov A. V., Berezina E. V., Yakovlev E. Y., Hasson N. R., Druzhinin S. V., Tyshov A. S., Ushakova E. V., Koshelev L. S. and Lapikov P. I. (2022). Radon Flux Density In Conditions Of Permafrost Thawing: Simulation Experiment. Geography, Environment, Sustainability, 15(3), DOI: 10.24057/2071-9388-2022-023.

23. Puchkov A. V., Yakovlev E. Y., Hasson N., Sobrinho G. A. N., Tsykareva Y. V., Tyshov A. S., Lapikov P. I. and Ushakova E. V. (2021). Radon Hazard In Permafrost Conditions: Current State Of Research. Geography, Environment, Sustainability, 14(4), DOI: 10.24057/2071-9388-2021-037.

24. Rodríguez-Martínez Á., Torres-Durán M., Barros-Dios J. M. and Ruano-Ravina, A. (2018). Residential radon and small cell lung cancer. A systematic review. In Cancer Letters, 426, DOI: 10.1016/j.canlet.2018.04.003

25. Rosenberger A., Hung R. J., Christiani D. C., Caporaso N. E., Liu G., Bojesen S. E., le Marchand L., Haiman C. A., Albanes D., Aldrich M. C., Tardon A., Fernández-Tardón G., Rennert G., Field J. K., Kiemeney B., Lazarus P., Haugen A., Zienolddiny S., Lam S. and Gomolka M. (2018). Genetic modifiers of radon-induced lung cancer risk: a genome-wide interaction study in former uranium miners. International Archives of Occupational and Environmental Health, 91(8), DOI: 10.1007/s00420-018-1334-3.

26. Sabbarese C., Ambrosino F., D’Onofrio A., Pugliese M., La Verde G., D’Avino V. and Roca V. (2021). The first radon potential map of the Campania region (southern Italy). Applied Geochemistry, 126, 104890, DOI:10.1016/j.apgeochem.2021.104890.

27. Sellmann P. V. and Delaney A. J. (1990). Radon measurements as indicators of permafrost distribution. Cold Regions Science and Technology, 18(3), DOI: 10.1016/0165-232X(90)90029-V.

28. Selvam S., Muthukumar P., Sajeev S., Venkatramanan S., Chung S. Y., Brindha K. and Murugan R. (2021). Quantification of submarine groundwater discharge (SGD) using radon, radium tracers and nutrient inputs in Punnakayal, south coast of India. Geoscience Frontiers, 12(1), 29-38, DOI: 10.1016/j.gsf.2020.06.012.

29. Shirokova L. S., Chupakov A. V., Ivanova I. S., Moreva O. Y., Zabelina S. A., Shutskiy N. A., Loiko S. V. and Pokrovsky O. S. (2021). Lichen, moss and peat control of C, nutrient and trace metal regime in lakes of permafrost peatlands. Science of the Total Environment, 782, DOI: 10.1016/j.scitotenv.2021.146737

30. Streletskiy D. A., Clemens S., Lanckman J. P. and Shiklomanov N. I. (2023). The costs of Arctic infrastructure damages due to permafrost degradation. Environmental Research Letters, 18(1), DOI: 10.1088/1748-9326/acab18.

31. Syam N. S., Lim S., Lee H. Y. and Lee, S. H. (2020). Determination of radon leakage from sample container for gamma spectrometry measurement of 226Ra. Journal of environmental radioactivity, 220, 106275, DOI: 10.1016/j.jenvrad.2020.106275

32. Tsapalov A. A., Miklyaev P. S. and Petrova T. B. (2013). The principle of detection of sites with active geodynamics based on the analysis of the ratio of Pb-210/Ra-226 activities in soil samples. ANRI, 1(72).

33. Yakovlev E., Orlov A., Kudryavtseva A. and Zykov S. (2022). Estimation of Physicochemical Parameters and Vertical Migration of Atmospheric Radionuclides in a Raised Peat Bog in the Arctic Zone of Russia. Applied Sciences (Switzerland), 12(21), DOI: 10.3390/app122110870.

34. Yakovlev E., Orlov A., Kudryavtseva A., Zykov S. and Zubov I. (2023). Assessment of the Impact of Anthropogenic Drainage of Raised Peat-Bog on Changing the Physicochemical Parameters and Migration of Atmospheric Fallout Radioisotopes in Russia’s Subarctic Zone (Subarctic Zone of Russia). Applied Sciences (Switzerland), 13(9), DOI: 10.3390/app13095778.

35. Ye Y., Wang H., Li M. and Chen M. (2024). Experimental study of radon migration parameters in uranium tailings under frozen and non-frozen conditions. Journal of Radioanalytical and Nuclear Chemistry, 334, 439-447, DOI: 10.1007/s10967-024-09842-7.

36. Zhang S., Jin D., Jin H., Li C., Zhang H., Jin X. and Cui J. (2024). Potential radon risk in permafrost regions of the Northern Hemisphere under climate change: A review. In Earth-Science Reviews, 250, DOI: 10.1016/j.earscirev.2024.104684.

37. Zhang Z. Q., Wu Q. B., Hou M. T., Tai B. W. and An Y. K. (2021). Permafrost change in Northeast China in the 1950s–2010s. Advances in Climate Change Research, 12(1), DOI: 10.1016/j.accre.2021.01.006.


Review

For citations:


Puchkov A.V., Yakovlev E.Yu. Radiation Parameters Of The Peat Bog Due To Permafrost Conditions Variations: A Case Study Of The Oma River Basin Of The Nenets Autonomous Okrug, Northwest Of Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(3):32-42. https://doi.org/10.24057/2071-9388-2025-3762

Views: 9


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)