Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

CHANGES IN TRENDS OF ATMOSPHERIC COMPOSITION OVER URBAN AND BACKGROUND REGIONS OF EURASIA: ESTIMATES BASED ON SPECTROSCOPIC OBSERVATIONS

https://doi.org/10.24057/2071-9388-2018-11-2-84-96

Abstract

The analysis of the CO and CH4 total column (TC) as well as aerosol optical depth (AOD) data in urban and background regions of Eurasia for different seasons and periods from 1998 to 2016 years is presented. Trends estimates based on longterm spectroscopic datasets of OIAP RAS (Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences) for stations Moscow, Zvenigorod (ZSS, Moscow province), Zotino (ZOTTO, Central Siberia), Beijing (joint site of OIAP RAS and IAP CAS (Institute of Atmospheric Physics, Chinese Academy of Sciences)), SPbSU stations Peterhof and NDACC stations located in Eurasia were compared between themselves and with similar assessments obtained from satellite data. Significant decrease of anthropogenic CO in megacities Moscow (3.5±2.2%/yr) and Beijing (1.4±1.4%/yr) in autumn months of 1998−2016 were found according ground-based spectroscopic observations. In spite of total anthropogenic CO emissions decrease (for Europe and China) and absence of growth of wild-fires emissions in 2007−2016 we found that CO TC in background regions of Northern Eurasia has stabilized or increased in summer and autumn months of 2007−2016. Decrease of AOD over Central and Southern Europe and over China (1−5%/ yr) was observed after 2007. Since 2007 an increase in CH4 TC trends over Northern Europe as well as for tropical belt of Eurasia has been obtained. Analysis of satellite observations AIRS v6 of CO and CH4 TC and MODIS AOD data confirmed the ground-based estimates of trends.

About the Authors

Vadim S. Rakitin
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation

Leading researcher in Laboratory of Atmospheric Spectroscopy of A.M. Obukhov Institute of Atmospheric Physics RAS,  position at present time is senior researcher.

Moscow



Nikolai F. Elansky
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation
Moscow


Pucai Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences
China

Beijing



Gengchen Wang
Institute of Atmospheric Physics, Chinese Academy of Sciences
China

Beijing



Natalia V. Pankratova
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation

Moscow



Yury A. Shtabkin
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation

Moscow



Andrey I. Skorokhod
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation

Moscow



Alexander N. Safronov
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation

Moscow



Maria V. Makarova
St. Petersburg State University
Russian Federation


Eugeny I. Grechko
A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Anderson J. C., Wang J., Zeng, J., Leptoukh G., Petrenko M., Ichoku C., and Hu C. (2013). Longterm statistical assessment of Aqua-MODIS aerosol optical depth over coastal regions: bias characteristics and uncertainty sources. Tellus B, 65, 20805, http://dx.doi.org/10.3402/tellusb.v65i0.20805.

2. Aumann H. H., Chahine M. T., Gautier C., Goldberg M., Kalnay E., McMillin L., Revercomb H., Rosenkranz P. W., Smith W. L., Staelin D., Strow L., and Susskind J. (2003). AIRS/AMSU/HSB on the Aqua Mission: Design, Science Objectives, Data Products and Processing Systems, IEEE T. Geosci. Remote, 41, pp. 253–264.

3. Chubarova N., Poliukhov A., Gorlova I. (2016). Long-term variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction, Atmospheric Measurement Techniques. V 9, № 2, pp. 313-334.

4. Coen Collaud M., Andrews E., Asmi A., Baltensperger U., Bukowiecki N., Day D., Fiebig M., Fjaeraa A. M., Flentje H., Hyvärinen A., Jefferson A., Jennings S. G., Kouvarakis G., Lihavainen H., Lund Myhre C., Malm W. C., Mihapopoulos N., Molenar J. V., O’Dowd C., Ogren J. A., Schichtel B. A., Sheridan P., Virkkula A., Weingartner E., Weller R., and Laj P. (2013). Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations. Atmos. Chem. Phys., 13, pp. 869-894, doi:10.5194/acp-13-869-2013.

5. Dianov-Klokov V. I., Yurganov L. N., Grechko E. I., Dzhola A.V. (1989). Spectroscopic measurements of atmospheric carbon monoxide and methane. 1: Latitudinal distribution. J.Atmos.Chem., 8, 2, pp. 139–151.

6. Golitsyn G.S., Grechko E.I., Wang G., Wang P., Dzhola A.V., Emilenko A.S., Kopeikin V.M., Rakitin V.S., Safronov A.N., Fokeeva E.V. (2015). Pollution research in Moscow and Beijing carbon monoxide and aerosol. Izvestiya, Atmospheric and Oceanic Physics, 51, 1, pp. 1-12. 7. Elansky N. (2014). Air quality and CO emissions in the Moscow megacity. Urban Climate, 8, pp. 42–56.

7. Elansky N.F., Ponomarev N.A., Verevkin Y.M. (2018). Air quality and pollutant emissions in the Moscow megacity in 2005–2014. Atmospheric Environment, 175, pp. 54-64.

8. Hilboll A., Richter A., and J. P. Burrows (2013). Long-term changes of tropospheric NO2 over megacities derived from multiple satellite instruments. Atmos. Chem. Phys., 12, ACPD31767-31828.

9. Holben B. N., Eck T. F., Slutsker I., Tanre D., Buis J. P., Setzer A., Vermote E., Reagan J. A., Kaufman Y. J., Nakajima T., Lavenu F., Jankowiak I., and Smirnov A. (1998). Aeronet – a federated instrument network and data archive for aerosol characterization. Remote Sens. Environ., 66, 1–16, doi:10.1016/S0034-4257(98)00031-5,.

10. Holben B. N., Tanre D., Smirnov A., Eck T. F., Slutsker I., Abuhassan N., Newcomb W. W., Schafer J. S., Chatenet B., Lavenu F., Kaufman Y. J., Castle J. V., Setzer A., Markham B., Clark D., Frouin R., Halthore R., Karneli A., O’Neill N. T., Pietras C., Pinker R. T., Voss K., and Zibordi G. (2001). An emerging ground-based aerosol climatology: aerosol optical depth from AERONET. J. Geophys. Res.-Atmos., 106, 12067–12097, doi:10.1029/2001jd900014.

11. IPCC, Climate Change (2013). Working Group I, Contribution to the Intergovernmental Panel on Climate Change, Fifth Assessment Report of Climate Change: The Physical Science Basis. Cambridge University Press, UK and New York, USA.

12. Jacob D. J. (1999). Introduction to Atmospheric Chemistry. Princeton University Press, http://acmg.seas.harvard.edu/people/faculty/djj/book/.

13. Khalil M.A.K., Pinto J.P. and Shearer M.J. (1999). Preface: Atmospheric carbon monoxide. Chemosphere: Global Change Science 1, xi±xiii.

14. Kim M., Kim J., Jeong U., Kim W., Hong H., Holben B., Eck T. F., Lim J. H., Song C.K., Lee S., and Chung C.-Y. (2016). Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI) on-board the Communication, Ocean, and Meteorological Satellite (COMS). Atmos. Chem. Phys., 16, pp. 1789-1808, https://doi.org/10.5194/acp-16-1789-2016.

15. Makarova M.V., Poberovskii A.V., and Osipov S. (2011). Time Variations of the Total CO Content in the Atmosphere near St. Petersburg. Izvestiya, Atmospheric and Oceanic Physics, 47, 739–746, doi:10.1134/S0001433811060090.

16. Myhre G., Shindell D., Bréon F.-M., Collins W., Fuglestvedt J., Huang J., Koch D., Lamarque J.-F., Lee D., Mendoza B., Nakajima T., Robock A., Stephens G., Takemura T., and Zhang H.(2013). Anthropogenic and natural radiative forcing, in: Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker T. F., Qin D., Plattner G.-K., Tignor M., Allen S. K., Boschung J., Nauels A., Xia Y., Bex V., and Midgley P.M. Cambridge University Press, Cambridge, UK, New York, NY, USA, pp. 659–740.

17. Novelli P. C., Masarie K. A., and Lang P. M. (1998). Distributions and recent changes in carbon monoxide in the lower troposphere. J. Geophys. Res. 103 (19), pp. 015–033.

18. Poberovskii A.V., Makarova M.V., Rakitin A.V., Ionov D.V., and Timofeev Yu. M. (2010). Variability of the total column amounts of climate influencing gases obtained from ground-based high-resolution spectroscope measurements. Doklady Earth Sciences, 432, 656–659, doi:10.1134/S1028334X10050223.

19. Randerson J.T., van der Werf G.R., Giglio L., Collatz G.J., and Kasibhatla P.S. (2017). Global Fire Emissions Database, Version 4.1 (GFEDv4). ORNL DAAC, Oak Ridge, Tennessee, USA. doi:10.3334/ORNLDAAC/1293.

20. Rakitin V.S., Fokeeva E. V., Grechko E. I., Dzhola A. V., and Kuznetsov R.D. (2011). Variations of the Total Content of Carbon Monoxide over Moscow Megapolis. Izvestiya, Atmospheric and Oceanic Physics, 47, pp. 59–66, doi:10.1134/S0001433810051019.

21. Rakitin V. S., Wang G., Wang P., Dzhola A.V., Safronov A.N., Grechko E. I., Shilkin A.V. (2016). Total column of carbon monoxide and methane over Eurasia: Long-term trends, season and weekly variations based on ground-based and satellite spectroscopic observations. Report series in aerosol science, 180, 389 p.

22. Rakitin V. S., Shtabkin Yu. A., Elansky N. F., Pankratova N. V., Skorokhod A. I., Grechko E. I., and Safronov A. N. (2015). Comparison Results of Satellite and Ground_Based Spectroscopic Measurements of CO, CH4, and CO2 Total Contents. Atmospheric and Oceanic Optics, 28(6), pp. 533–542, doi10.1134/S1024856015060135. Rakitin V.S., Elansky N.F., Pankratova N.V., Skorokhod A.I., Dzhola A.V., Shtabkin Yu.A., Wang P., Wang G., Vasilieva A.V., Makarova M.V., Grechko E.I. (2017). Investigation of trends of CO and CH4 total column over Eurasia based on the analysis of ground and orbital spectroscopic measurements, Atmospheric and Oceanic Optics, 30(6), pp. 517–526, doi:10.15372/ AOO20170601.

23. Senten C., De Mazière M., Dils B., Hermans C., Kruglanski M., Neefs E., Scolas F., Vandaele A.C., Vanhaelewyn G., Vigouroux C ., Carleer M., Coheur P.F., Fally S., Barret B., Baray J.L., Delmas R., Leveau J., Metzger J.M., Mahieu E., Boone C., Walker K.A., Bernath P.F., and Strong K. (2008). Technical Note: New ground-based FTIR measurements at Ile de La Réunion: observations, error analysis, and comparisons with independent data. Atmos. Chem. Phys., 8, 3483-3508, doi:10.5194/acp-8-3483-2008.

24. Shakhova N., Semiletov I., Sergienko V., Lobkovsky L., Yusupov V., Salyuk A., Salomatin A., Chernykh D., Kosmach D., Panteleev G., Nicolsky D., Samarkin V., Joye S., Charkin A., Dudarev O., Meluzov A., Gustafsson O. (2015). The East Siberian Arctic Shelf: towards further assessment of permafrost-related methane fluxes and role of sea ice. Phil. Trans. R. Soc. A 373: 20140451.

25. Sonnemann G. R. and Grygalashvyly M. (2014). Global annual methane emission rate derived from its current atmospheric mixing ratio and estimated lifetime. Ann. Geophys., 32, pp. 277-283.

26. Wang P.-C., Golitsyn G. S., Wang G.-C., Grechko E. I., Rakitin V. S., Fokeeva E. V., and Dzhola A. V. (2014). Variation Trend and Characteristics of Anthropogenic CO Column Content in the Atmosphere over Beijing and Moscow. AOSL journal, V 7, №3, pp. 243-247.

27. Wang P., Elansky N. F., Timofeev Yu. M., Wang G., Golitsyn G. S., Makarova M. V., Rakitin V. S., Shtabkin Yu. A., Skorokhod A. I., Grechko E. I., Fokeeva E.V., and Safronov A. N. (2018). A study of the long-term trends of CO total column for urban and background regions using ground-based and satellite spectroscopic measurements. J. Adv. Atm. Sc., 35(7), doi:10.1007/s00376-017-6327-8. (in press)

28. Wang P., Ning S., Dai J., Sun J., Lv M., Song Q., Dai X., Zhao J., Dajiang Yu (2017). Trends and Variability in Aerosol Optical Depth over North China from MODIS C6 Aerosol Products during 2001–2016. Atmosphere, 8, 223 p.

29. Warner J., Carminati F., Wei Z., Lahoz W., and Attié J.-L. (2013). Tropospheric carbon monoxide variability from AIRS under clear and cloudy conditions. Atmos. Chem. Phys., 13, 12469–12479.

30. WMO/IGAC (2012). Impacts of Megacities on Air Pollution and Climate. Rep. No. 205, WMO, Geneva.

31. Worden H. M., Deeter M. N., Frankenberg C., George M., Nichitiu F., Worden J., Aben I., Bowman K. W., Clerbaux C., Coheur P. F., de Laat A. T. J., Detweiler R., Drummond J. R., Edwards D. P., Gille J. C., Hurtmans D., Luo M., Martínez-Alonso S., Massie S., Pfister G., and Warner J. X. (2013). Decadal record of satellite carbon monoxide observations. Atmos. Chem. Phys., 13, pp. 837-850, doi:10.5194/acp-13-837-2013.

32. Yurganov L., McMillan W., Grechko E., and Dzhola A. (2010). Analysis of global and regional CO burdens measured from space between 2000 and 2009 and validated by groundbased solar tracking spectrometers. Atmos. Chem. Phys., 10, 3479-3494, doi:10.5194/acp10-3479-2010.


Review

For citations:


Rakitin V.S., Elansky N.F., Wang P., Wang G., Pankratova N.V., Shtabkin Yu.A., Skorokhod A.I., Safronov A.N., Makarova M.V., Grechko E.I. CHANGES IN TRENDS OF ATMOSPHERIC COMPOSITION OVER URBAN AND BACKGROUND REGIONS OF EURASIA: ESTIMATES BASED ON SPECTROSCOPIC OBSERVATIONS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2018;11(2):84-96. https://doi.org/10.24057/2071-9388-2018-11-2-84-96

Views: 1306


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)