Smart Detection Of Illicit Cannabis Plantations Using Remote Sensing Technology And Machine Learning
https://doi.org/10.24057/2071-9388-2025-3538
Abstract
Remote sensing technology and machine learning classifiers can be utilized to develop smart detection systems for illicit crops such as Cannabis sativa L. Machine learning algorithms for classifying medium-resolution optical satellite data can be compared to identify the best model for enhancing law enforcement’s detection of illicit crops efficiently and accurately. Remote sensing-based smart detection systems have been developed in South America and Central Asia; however, these methods cannot be used effectively for Indonesia due to high cloud coverage, geographical differences, and the smaller area of Cannabis sativa L. plantations. This research developed an agile methodology that employs backpropagation neural networks to analyze the statistical growth phenology of cannabis derived from multitemporal medium-resolution remote sensing data. Using datasets derived from Indonesian law enforcement eradication records, the method achieved 94% accuracy and a kappa coefficient of 0.9. Further, plant growth phenology based on vegetation index values from multitemporal data was used to assess the condition of identified cannabis plantations.
About the Authors
Dedi IrawadiIndonesia
Jakarta, 11480; Bogor, 16310
Tuga Mauritsius
Indonesia
Jakarta, 11480
Dony Kushardono
Indonesia
Bandung, 40135
Syarif Budhiman
Indonesia
Bandung, 40135
Karunika Diwyacitta
Indonesia
Bandung, 40135
Bayu S. Adhitama
Indonesia
Bandung, 40135
Fauzan A. Ayubi
Indonesia
Bandung, 40135
Olivia Maftukhaturrizqoh
Indonesia
Bandung, 40135
Ika S. Supriyani
Indonesia
Bandung, 40135
References
1. Andre, C. M., Hausman, J. F., and Guerriero, G. (2016). Cannabis Sativa: The Plant of the Thousand and One Molecules. Frontiers in Plant Science 7:1–17. doi: 10.3389/fpls.2016.00019.
2. Armenteras, D., Cabrera, E., Rodríguez, N., and Retana, J. (2013). National and Regional Determinants of Tropical Deforestation in Colombia. Regional Environmental Change 13(6):1181–93. doi: 10.1007/s10113-013-0433-7.
3. Bicakli, F., Kaplan, G., and Alqasemi, A. S. (2022). Cannabis Sativa L. Spectral Discrimination and Classification Using Satellite Imagery and Machine Learning. Agriculture (Switzerland) 12(6). doi: 10.3390/agriculture12060842.
4. Chen, F., andTsou, J.Y. (2021). DRSNet: Novel Architecture for Small Patch and Low-Resolution Remote Sensing Image Scene Classification. International Journal of Applied Earth Observation and Geoinformation 104:102577. doi: 10.1016/j.jag.2021.102577.
5. Choudhary, K., Shi, W., Boori, M. S., and Corgne, S. (2019). Agriculture Phenology Monitoring Using NDVI Time Series Based on Remote Sensing Satellites: A Case Study of Guangdong, China. Optical Memory and Neural Networks (Information Optics) 28(3):204–14. doi: 10.3103/S1060992X19030093.
6. Congalton, R. G., and Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Vol. 25. Second. Florida: CRC Press.
7. Dahal, D., Wylie, B., and Howard, D. (2018). Rapid Crop Cover Mapping for the Conterminous United States. Scientific Reports 8(1):1–13. doi: 10.1038/s41598-018-26284-w.
8. Dillis, C., McIntee, C., Butsic, V., Le, L., Grady, K., and Grantham, T. (2020). Water Storage and Irrigation Practices for Cannabis Drive Seasonal Patterns of Water Extraction and Use in Northern California. Journal of Environmental Management 272:110955. doi: 10.1016/j.jenvman.2020.110955.
9. Diwediga, B., Agodzo, S., Wala, K., and Le, Q. B. (2017). Assessment of Multifunctional Landscapes Dynamics in the Mountainous Basin of the Mo River (Togo, West Africa). Journal of Geographical Sciences 27(5):579–605. doi: 10.1007/s11442-017-1394-4.
10. Duraisamy, V., Bendapudi, R., and Jadhav, A. (2018). Identifying Hotspots in Land Use Land Cover Change and the Drivers in a Semi-Arid Region of India. Environmental Monitoring and Assessment 190(9). doi: 10.1007/s10661-018-6919-5.
11. Elbasi, E., Zaki, C., Topcu, A. E., Abdelbaki, W., Zreikat, A. I., Cina, E., Shdefat, A., and Saker, L. (2023). Crop Prediction Model Using Machine Learning Algorithms. Applied Sciences (Switzerland) 13(16). doi: 10.3390/app13169288.
12. Ferreira, A., Felipussi, S. C., Pires, R., Avila, S., Santos, G., Lambert, J., Huang, J., and Rocha, A. (2019). Eyes in the Skies: A Data-Driven Fusion Approach to Identifying Drug Crops from Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 12(12):4773–86. doi: 10.1109/JSTARS.2019.2917024.
13. Guo, Y., De Jong, K., Liu, F., Wang, X., and Li, C. (2012). A Comparison of Artificial Neural Networks and Support Vector Machines on Land Cover Classification. In Z. Li, X. Li, Y. Liu, and Z. Cai (Eds.), Computational Intelligence and Intelligent Systems 316:531-539. ISICA. doi: 10.1007/978-3-642-34289-9_59.
14. Huang, S., Tang, L., Hupy, J. P., Wang, Y., and Shao, G. (2021). A Commentary Review on the Use of Normalized Difference Vegetation Index (NDVI) in the Era of Popular Remote Sensing. Journal of Forestry Research 32(1):1–6. doi: 10.1007/s11676-020-01155-1.
15. Jimenez, R. B., Lane, K. J., Hutyra, L. R., and Fabian, M. P. (2022). Spatial Resolution of Normalized Difference Vegetation Index and Greenness Exposure Misclassification in an Urban Cohort. Journal of Exposure Science and Environmental Epidemiology 32(2):213–22. doi: 10.1038/s41370-022-00409-w.
16. Karst, A. 2018. Weighing the Benefits and Risks of Medical Marijuana Use: A Brief Review. Pharmacy 6(4):128. doi: 10.3390/pharmacy6040128.
17. Kosczor, E., Forkel, M., Hernández, J., Kinalczyk, D., Pirotti, F., and Kutchartt, E. (2022). Assessing Land Surface Phenology in Araucaria-Nothofagus Forests in Chile with Landsat 8/Sentinel-2 Time Series. International Journal of Applied Earth Observation and Geoinformation 112. doi: 10.1016/j.jag.2022.102862.
18. Kushardono, D., Fukue, K., Shimoda, H., and Sakata, T. (1995a). Optimized Neural Network for Spatial Land Cover Classification with the Aid of Co Occurrence Matrix. Journal of the Japan Society of Photogrammetry and Remote Sensing 34(4):22–35. doi: 10.4287/jsprs.34.4_22.
19. Kushardono, D., Fukue, K., Shimoda, H., and Sakata, T. (1995b). Comparison of multi-temporal image classification methods. 1995 International Geoscience and Remote Sensing Symposium, IGARSS ’95. Quantitative Remote Sensing for Science and Applications, 1282–1284. doi: 10.1109/IGARSS.1995.521726
20. Kustiyo, K., Rokhmatuloh, R., Saputro, A. H., and Kushardono, D. (2024). Rice Fields Classification through Spectral-Temporal Data Fusion during the Rainy and Dry Seasons Using Sentinel-2 Optical Images in Subang Regency, West Java, Indonesia. Paddy and Water Environment 22(3):375–385. doi: 10.1007/s10333-024-00972-y.
21. Lim, K., See, Y. M., and Lee, J. (2017). A Systematic Review of the Effectiveness of Medical Cannabis for Psychiatric, Movement and Neurodegenerative Disorders. Clinical Psychopharmacology and Neuroscience 15(4):301–312. doi: 10.9758/cpn.2017.15.4.301.
22. Mattiuzzi, M., Bussink, C., and Bauer, T. (2014). Analysing Phenological Characteristics Extracted from Landsat NDVI Time Series to Identify Suitable Image Acquisition Dates for Cannabis Mapping in Afghanistan. Photogrammetrie, Fernerkundung, Geoinformation 2014(5):383–392. doi: 10.1127/1432-8364/2014/0231.
23. Morello, V., Brousseau, v. D., Wu, N., Wu, B. S., MacPherson, S., and Lefsrud, M. (2022). Light Quality Impacts Vertical Growth Rate, Phytochemical Yield and Cannabinoid Production Efficiency in Cannabis Sativa. Plants 11(21). doi: 10.3390/plants11212982.
24. Nieto, L., Schwalbert, R., Prasad, P. V. V., Olson, B. J. S. C., and Ciampitti, I. A. (2021). An Integrated Approach of Field, Weather, and Satellite Data for Monitoring Maize Phenology. Scientific Reports 11(1):1–10. doi: 10.1038/s41598-021-95253-7.
25. Park, S., Im, J., Park, S., Yoo, C., Han, H., and Rhee, J. (2018). Classification and Mapping of Paddy Rice by Combining Landsat and SAR Time Series Data. Remote Sensing 10(3):1–22. doi: 10.3390/rs10030447.
26. Qian, Y., Zhou, W., Yan, J., Li, W., and Han, L. (2015). Comparing Machine Learning Classifiers for Object-Based Land Cover Classification Using Very High Resolution Imagery. Remote Sensing 7(1):153–168. doi: 10.3390/rs70100153.
27. Sabat-Tomala, A., Raczko, E., and Zagajewski, B. (2020). Comparison of Support Vector Machine and Random Forest Algorithms for Invasive and Expansive Species Classification Using Airborne Hyperspectral Data. Remote Sensing 12(3). doi: 10.3390/rs12030516.
28. Sirro, L., Häme, T., Rauste, Y., Kilpi, J., Hämäläinen, J., Gunia, K., de Jong, B., and Pellat, F., P. (2018). Potential of Different Optical and SAR Data in Forest and Land Cover Classification to Support REDD+ MRV. Remote Sensing 10(6). doi: 10.3390/rs10060942.
29. Suárez, H. L. A., Angarita, G. P. G., Castañeda, L. N. R., and Castro, P. P. C. (2022). Illicit Crops, Planning of Substitution with Sustainable Crops Based on Remote Sensing: Application in the Sierra Nevada of Santa Marta, Colombia. Climate Emergency – Managing, Building , and Delivering the Sustainable Development Goals 483–494. doi: 10.1007/978-3-030-79450-7_36.
30. Sujud, L., Jaafar, H., Hassan, M. A. H., and Zurayk, R. (2021). Cannabis Detection from Optical and RADAR Data Fusion: A Comparative Analysis of the SMILE Machine Learning Algorithms in Google Earth Engine. Remote Sensing Applications: Society and Environment 24. doi: 10.1016/j.rsase.2021.100639.
31. Suliman, A., and Zhang, Y. (2015). A Review on Back-Propagation Neural Networks in the Application of Remote Sensing Image Classification. Journal of Earth Science and Engineering 5:52–65. doi: 10.17265/2159-581X/2015.
32. Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S., and Teodoro, A. C. 2019. Integration of Sentinel-1 and Sentinel-2 for Classification and LULC Mapping in the Urban Area of Belém, Eastern Brazilian Amazon. Sensors (Switzerland) 19(5). doi: 10.3390/s19051140.
33. Wilkinson, S. T., Yarnell, S., Radhakrishnan, R., Ball, S. A., and D’souza, D. C. (2016). Marijuana Legalization: Impact on Physicians and Public Health. Annual Review of Medicine 67:453–466. doi: 10.1146/annurev-med-050214-013454.
34. Yang, J., Dong, J., Liu, L., Zhao, M., Zhang, X., Li, X., Dai, J., Wang, H., Wu, C., You, N., Fang, S., Pang, Y., He, Y., Zhao, G., Xiao, X., and Ge, Q. (2023). A Robust and Unified Land Surface Phenology Algorithm for Diverse Biomes and Growth Cycles in China by Using Harmonized Landsat and Sentinel-2 Imagery. ISPRS Journal of Photogrammetry and Remote Sensing 202:610–636. doi: 10.1016/j.isprsjprs.2023.07.017.
35. Zuo, L., Liu, R., Liu, Y., and Shang, R. (2019). Effect of Mathematical Expression of Vegetation Indices on the Estimation of Phenology Trends from Satellite Data. Chinese Geographical Science 29(5):756–767. doi: 10.1007/s11769-019-1070-y.
Review
For citations:
Irawadi D., Mauritsius T., Kushardono D., Budhiman S., Diwyacitta K., Adhitama B.S., Ayubi F.A., Maftukhaturrizqoh O., Supriyani I.S. Smart Detection Of Illicit Cannabis Plantations Using Remote Sensing Technology And Machine Learning. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(1):130-138. https://doi.org/10.24057/2071-9388-2025-3538