Methods Of Studying The Alpine Treeline: A Systematic Review
https://doi.org/10.24057/2071-9388-2025-3735
Abstract
This paper provides a review and comparison of the methods for assessing trends in the dynamics of alpine treeline (ATL) in high mountains are presented in. The methods analyzed are contemporary, traditionally used (dendrochronological and paleocarpological methods, retrospective analysis of historical photographs and geodetic surveying, and multi-temporal aerial photography), and innovative ones developed in recent decades (semi-automatic and automatic methods of interpretation of high- and medium-resolution space imagery and methods of space imagery interpretation using different techniques, such as classification, segmentation, vegetation index analysis, and machine learning algorithms). Different interpretations of the concept of 'alpine treeline', which is currently established in geobotany and landscape sciences, are discussed. The attention to ATL dynamics is caused by global climate change's widespread forest increase and the decline in high mountain pastures. The ATL phenomenon's geographic map is condensed and displayed. There is an overview of the experience with different methods in varying mountain regions around the world. Each method is described in terms of its spatial scale, coverage, advantages, labor intensity, complexity, and limitations. It is shown that The effectiveness of the methods mainly depends on two key factors: the size of the area being studied and the time period over which changes are observed. The problem that still limits the use of remote sensing data is the contradiction between the accuracy of measurements and the coverage of the territories involved. To solve this problem, we suggest using a mix of methods that involve automatically classifying medium-resolution space images. This will be done by training on data collected from both fieldwork and lab experiments using different techniques.
Keywords
About the Authors
Andrey G. PurekhovskyRussian Federation
Staromonetniy lane, 29, Moscow, 119017
Alexey N. Gunya
Russian Federation
Staromonetniy lane, 29, Moscow, 119017
Evgeniy Yu. Kolbowsky
Russian Federation
Staromonetniy lane, 29, Moscow, 119017; Leninskie Gory, 1, Moscow, 119991
Alexei A. Aleinikov
Russian Federation
Staromonetniy lane, 29, Moscow, 119017
References
1. Alekseeva N. N., Gunya A.N., Cherkasova A.A. (2021). Land cover dynamics during recent 30 years (case study of the "Alanya" National park, the Northern Caucasus). Lomonosov Geography Journal, (2), 92–102, (in Russian with English summary).
2. Allen T.R. and Walsh S.J. (1996). Spatial and compositional pattern of alpine treeline, Glacier National Park, Montana. Photogrammetric Engineering and Remote Sensing, 62(11), 1261–1268.
3. Ameztegui A., Coll L., Brotons L. and Ninot J.M. (2016). Land-use legacies rather than climate change are driving the recent upward shift of the mountain tree line in the Pyrenees. Global Ecology and Biogeography, 25(3), 263–273, DOI: 10.1111/geb.12407
4. Batllori E., Camarero J.J. and Gutiérrez E. (2010). Current regeneration patterns at the tree line in the Pyrenees indicate similar recruitment processes irrespective of the past disturbance regime. Journal of Biogeography, 37(10), 1938–1950, DOI: 10.1111/j.1365-2699.2010.02348.x
5. Bharti R.R., Adhikari B.S. and Rawat G.S. (2012). Assessing vegetation changes in timberline ecotone of Nanda Devi National Park, Uttarakhand. International Journal of Applied Earth Observation and Geoinformation, 18(1), 472–479, DOI: 10.1016/j.jag.2011.09.018
6. Bocharov A.Yu. (2011). Structure and dynamics of high-mountain forests of the North Chuysky Ridge (Altai Mountains) under climate change conditions. Bulletin of Tomsk State University, (352), 203–206, (in Russian with English summary).
7. Buchner J., Yin H., Frantz D., Kuemmerle T., Askerov E., Bakuradze T., Bleyhl B., Elizbarashvili N., Komarova A., Lewińska K.E., Rizayeva A., Sayadyan H., Tan B., Tepanosyan G., Zazanashvili N. and Radeloff V.C. (2020). Land-cover change in the Caucasus Mountains since 1987 based on the topographic correction of multi-temporal Landsat composites. Remote Sensing of Environment, 248(September 2019), 111967, DOI: 10.1016/j.rse.2020.111967
8. Calvin K., Dasgupta D., Krinner G., Mukherji A., Thorne P.W., Trisos C., Romero J., Aldunce P., Barrett K., Blanco G., Cheung W.W.L., Connors S., Denton F., Diongue-Niang A., Dodman D., Garschagen M., Geden O., Hayward B., Jones C., … Ha M. (2023). IPCC, 2023: Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland. , P. Arias, M. Bustamante, I. Elgizouli, G. Flato, M. Howden, C. Méndez-Vallejo, J. J. Pereira, R. Pichs-Madruga, S. K. Rose, Y. Saheb, R. Sánchez Rodríguez, D. Ürge-Vorsatz, C. Xiao, N. Yassaa, J. Romero, J. Kim, E. F. Haites, Y. Jung, R. Stavins, … C. Péan eds. DOI: 10.59327/IPCC/AR6-9789291691647
9. Camarero J.J., Gazol A., Sánchez-Salguero R., Fajardo A., McIntire E.J.B., Gutiérrez E., Batllori E., Boudreau S., Carrer M., Diez J., Dufour-Tremblay G., Gaire N.P., Hofgaard A., Jomelli V., Kirdyanov A. V., Lévesque E., Liang E., Linares J.C., Mathisen I.E., … Wilmking M. (2021). Global fading of the temperature–growth coupling at alpine and polar treelines. Global Change Biology, 27(9), 1879–1889, DOI: 10.1111/gcb.15530
10. Chen I.C., Hill J.K., Ohlemüller R., Roy D.B. and Thomas C.D. (2011). Rapid range shifts of species associated with high levels of climate warming. Science, 333(6045), 1024–1026, DOI: 10.1126/SCIENCE.1206432/SUPPL_FILE/CHEN.SOM.PDF
11. Coops N.C., Morsdorf F., Schaepman M.E. and Zimmermann N.E. (2013). Characterization of an alpine tree line using airborne LiDAR data and physiological modeling. Global Change Biology, 19(12), 3808–3821, DOI: 10.1111/gcb.12319
12. Däniker A. (1923). Biologische Studien über Wald- und Baumgrenze, insbesondere über die klimatischen Ursachenund deren Zusammenhänge. Vierteljahresschr. Naturfr. Ges. Zürich, 63, 1–102.
13. Devi N.M., Kukarskih V.V., Galimova A.A., Bubnov M.O. and Zykov S.V. (2018). Modern Dynamics of High-Mountain Forests in the Northern Urals: Major Trends. Journal of Siberian Federal University. Biology, 11(3), 248–259, DOI: 10.17516/1997-1389-0069
14. Devos C.C., Ohlson M., Næsset E. and Bollandsås O.M. (2022). Soil carbon stocks in forest-tundra ecotones along a 500 km latitudinal gradient in northern Norway. Scientific Reports, 12(1), 13358, DOI: 10.1038/s41598-022-17409-3
15. Dinca L., Nita M., Hofgaard A., Alados C., Broll G., Borz S., Wertz B. and Monteiro A. (2017). Forests dynamics in the montane–alpine boundary: a comparative study using satellite imagery and climate data. Climate Research, 73(1–2), 97–110. DOI: 10.3354/cr01452
16. Du H., Liu J., Li M., Büntgen U., Yang Y., Wang L., Wu Z. and He H.S. (2018). Warming-induced upward migration of the alpine treeline in the Changbai Mountains, northeast China. Global Change Biology, 24(3), 1256–1266, DOI: 10.1111/gcb.13963
17. Dyakonov K.N., Bochkarev Y.N. and Reteyum A. Yu. (2012). Geophysical and Astrophysical factors governing biological productivity of landscapes at the northern and the upper forest lines. Bulletin of Moscow University. Series 5. Geography, (4), 195–222, (in Russian with English summary).
18. Frei E.R., Barbeito I., Erdle L.M., Leibold E. and Bebi P. (2023). Evidence for 40 Years of Treeline Shift in a Central Alpine Valley. Forests, 14(2), 412, DOI: 10.3390/f14020412
19. Galako V.A. (2002). Impact of climate change on the spatial and temporal structure of spruce stands of the upper forest boundary in the Ural Mountains. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 9(1), 4–6.
20. Goskov E.A., Vorobyeva T.S. and Vorobyev I.B. (2022). Laser scanning in the study of the structure of forest stands of the upper forest boundary in the southern Urals. Russian Forests and Economy in them, 2(81), 4–10, (in Russian), DOI: 10.51318/FRET.2022.63.84.001
21. Grabherr, Georg, Gottfried M., Pauli and Harald. (2000). GLORIA: A Global Observation Research Initiative in Alpine Environments. Mountain Research and Development, 20(2), 190–191, DOI: 10.1659/0276-4741(2000)020
22. Greenwood S., Chen J., Chen C. and Jump A.S. (2014). Strong topographic sheltering effects lead to spatially complex treeline advance and increased forest density in a subtropical mountain region. Global Change Biology, 20(12), 3756–3766, DOI: 10.1111/gcb.12710
23. Grigorev A.A., Moiseev P.A. and Nagimov Z.Y. (2013). Dynamics of the timberline in high mountain areas of the nether-polar Urals under the influence of current climate change. Russian Journal of Ecology, 44(4), 312–323, DOI: 10.1134/S1067413613040061
24. Grigoryev A.A., Moiseyev P.A., Nagimov Z.Ya. (2010). The effect of climate change on the dynamics of the top timberline in the Subpolar Ural mountains. Bulletin of Altai State Agricultural University, 74(12), 34–40.
25. Groen T.A., Fanta H.G., Hinkov G., Velichkov I., Van Duren I. and Zlatanov T. (2012). Tree Line Change Detection Using Historical Hexagon Mapping Camera Imagery and Google Earth Data. GIScience & Remote Sensing, 49(6), 933–943, DOI: 10.2747/1548-1603.49.6.933
26. Haddaway N.R., Land M. and Macura B. (2017). “A little learning is a dangerous thing”: A call for better understanding of the term ‘systematic review.’ Environment International, 99, 356–360, DOI: 10.1016/j.envint.2016.12.020
27. Holtmeier F.K. and Broll G. (2019). Treeline Research—From the Roots of the Past to Present Time. A Review. Forests, 11(1), 38, DOI: 10.3390/f11010038
28. Holtmeier K. (2010). Altitudinal and polar treelines in the northern hemisphere Causes and response to climate change. Polarforschung, 79(September 2009), 139–153.
29. IPCC (2013). Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1535.
30. IPCC (2014). Climate Change 2014: impacts, adaptation, and vulnerability. Part A: global and sectoral aspects. Contribution of Working Group II to the fifth assessment report of the Intergovernmental Panel on Climate Change. 1132.
31. Istomov S.V. (2005). Current dynamics of timberline in West Sayan MTS. Proceedings of the Tigirek State Natural Reserve, 1, 211–214, (in Russian with English summary), DOI: 10.53005/20767390_2005_1_211
32. Kapralov D.S. (2007). Study of spatial and temporal dynamics of the upper forest boundary in the northern and southern Urals, 21. Ural State Forestry University.
33. Kolunchukova M.A. and Reznikov A.I. (2020). Some results of tree-ring analysis at the upper timberline in the mountains of Western Tuva. ProceedingsoftheRussianGeographicSociety,152(3),45–58, (in Russian with English summary), DOI:10.31857/S0869607120030039
34. Koshkarov D.A., Koshkarova L.V. and Ovchinnikov Y.I. (2019). Climatogenic dynamics of phytocenotic diversity in the belt of the upper forest boundary of the Western Sayan over the last four thousand years. Conifers of the Boreal Area, 37 (5), 301–306, (in Russian with English summary).
35. Kravtsova V.I. and Loshkareva A.R. (2010). Investigation of the northern forest boundary using space images of different resolutions. Bulletin of Moscow University. Series 5. Geography, 6, 49–57, (in Russian with English summary).
36. Kullman L. and Öberg L. (2009). Post-Little Ice Age tree line rise and climate warming in the Swedish Scandes: a landscape ecological perspective. Journal of Ecology, 97(3), 415–429, DOI: 10.1111/j.1365-2745.2009.01488.x
37. Lenoir J., Gégout J., Pierrat J., Bontemps J. and Dhôte J. (2009). Differences between tree species seedling and adult altitudinal distribution in mountain forests during the recent warm period (1986–2006). Ecography, 32(5), 765–777, DOI: 10.1111/j.1600-0587.2009.05791.x
38. Liang E., Wang Y., Eckstein D. and Luo T. (2011). Little change in the fir tree-line position on the southeastern Tibetan Plateau after 200 years of warming. New Phytologist, 190(3), 760–769, DOI: 10.1111/j.1469-8137.2010.03623.x
39. Luo G. and Dai L. (2013). Detection of alpine tree line change with high spatial resolution remotely sensed data. Journal of Applied Remote Sensing, 7(1), 073520, DOI: 10.1117/1.JRS.7.073520
40. Lytkin V.M. (2019). Position of the upper forest boundary on the Suntar-Khayata Ridge in the Holocene optimum. Arctic and Antarctic, 3(3), 54–60, DOI: 10.7256/2453-8922.2019.3.30385
41. Mamet S.D. and Kershaw G.P. (2012). Subarctic and alpine tree line dynamics during the last 400 years in north-western and central Canada. Journal of Biogeography, 39(5), 855–868, DOI: 10.1111/j.1365-2699.2011.02642.x
42. Mathisen I.E., Mikheeva A., Tutubalina O.V., Aune S. and Hofgaard A. (2014). Fifty years of tree line change in the Khibiny Mountains, Russia: Advantages of combined remote sensing and dendroecological approaches. Applied Vegetation Science, 17(1), 6–16, DOI: 10.1111/avsc.12038
43. Mazepa V.S. and Shiyatov S.G. (2015). Climatic driven dynamics of the upper tree-line ecotone of light larch forests in the polar Ural mountains for the last one and a half thousand years. Russian Forests and Economy in them", 4(55), 4–11.
44. McCaffrey D. and Hopkinson C. (2020). Repeat Oblique Photography Shows Terrain and Fire-Exposure Controls on Century-Scale Canopy Cover Change in the Alpine Treeline Ecotone. Remote Sensing, 12(10), 1569, DOI: 10.3390/rs12101569
45. Mihai B., Săvulescu I., Rujoiu-Mare M. and Nistor C. (2017). Recent forest cover changes (2002–2015) in the Southern Carpathians: A case study of the Iezer Mountains, Romania. Science of The Total Environment, 599–600, 2166–2174, DOI: 10.1016/j.scitotenv.2017.04.226
46. Mikhailovich A.P. (2016). Spatial and temporal dynamics of the upper forest boundary in the lower reaches of the Yengayu and Kerdomanshor rivers (Polar Urals) in the second half of the 20th - early 21th centuries. Ecological Equilibrium: Structure of Geographical Space : Proceedings of the VII International Scientific and Practical Conference November 11, St. Petersburg, 120–124.
47. Mikheeva A.I. (2010). Spatial variability of the position of the upper forest boundary in the Khibiny (based on remote sensing materials). Bulletin of Moscow University. Series 5: Geography, (4), 18–22, (in Russian with English summary).
48. Moiseev P. A., Bartysh A. A., Goryaeva A.V., Koshkina N.B., Nagimov Z.Ya. (2008). Dynamics of subgoltz forest stands on the slopes of Serebryansky Kamen (Northern Urals) in recent centuries. Conifers of the Boreal Area, 25(1–2), 21–27.
49. Morley P.J., Donoghue D.N.M., Chen J.-C. and Jump A.S. (2018). Integrating remote sensing and demography for more efficient and effective assessment of changing mountain forest distribution. Ecological Informatics, 43, 106–115, DOI: 10.1016/j.ecoinf.2017.12.002
50. Murzakmatov R.T., Burenina T.A., Koshkarova V.L. and Farber S.K. (2014). Dynamics of the tundra-forest boundary in the highlands of West Tyva. Conifers of the Boreal Area, 32(3–4), 38–40б (in Russian with English summary).
51. Nikolin A.A., Murzaeva M.K., Pomaznyuk V.A., Velikzhanin P.I., Pisarenko A.I., Mehrentsev A. V and Shiyatov S.G. (2015). Using Repeat Landscape Photos for Estimation of Dynamics of Forest-Tundra Communities in the Polar Urals. Journal "Russian Forests and Economy in them", 3(54), 20–28.
52. Nisametdinow N., Moiseev P and Vorobiev I. (2021). Laser Scanning and Aerial Photography with UAV in Studying the Structure of Forest-Tundra Stands in the Khibiny Mountains. Lesnoy Zhurnal (Forestry Journal), 4, 9–22. DOI: 10.37482/0536-1036-2021-4-9-22
53. Nizametdinov N.F., Shalaumova Y.V, Mazepa V.S. and Moiseev P.A. (2022). Assessment of Past Decadal Dynamics of Tree Stands in Forest–Tundra Transition Zone on the Polar Ural Mountains Calibrated Using Historical and Modern Field Measurements. Forests, 13(12), 2107, DOI: 10.3390/f13122107
54. Pearson R.G. and Dawson T.P. (2003). Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371, DOI: 10.1046/j.1466-822X.2003.00042.x
55. Peterson A.T., Berthiaume K., Klett M. and Munroe J.S. (2022). Linking repeat photography and remote sensing to assess treeline rise with climate warming: Mount of the Holy Cross, Colorado. Arctic, Antarctic, and Alpine Research, 54(1), 478–487, DOI: 10.1080/15230430.2022.2121245
56. Potapov P., Hansen M.C., Kommareddy I., Kommareddy A., Turubanova S., Pickens A., Adusei B., Tyukavina A. and Ying Q. (2020). Landsat Analysis Ready Data for Global Land Cover and Land Cover Change Mapping. Remote Sensing, 12(3), 426, DOI: 10.3390/rs12030426
57. Potapov P., Li X., Hernandez-Serna A., Tyukavina A., Hansen M.C., Kommareddy A., Pickens A., Turubanova S., Tang H., Silva C.E., Armston J., Dubayah R., Blair J.B. and Hofton M. (2021). Mapping global forest canopy height through integration of GEDI and Landsat data. Remote Sensing of Environment, 253, 112165, DOI: 10.1016/j.rse.2020.112165
58. Purekhovsky A.Zh., Gunya A.N. and Kolbovsky E.Yu. (2022). Dynamics of High-Mountain Landscapes in the North Caucasus According to Remote Sensing Data in 2000-2020. Izvestiya Dagestanogo gosudagogicheskogo pedagogicheskogo universiteta. Natural and Exact Sciences, 16(2), 72–84, (in Russian with English summary), DOI: 10.31161/1995-0675-2022-16-2-72-84
59. Shiyatov S. G. (2009). Dynamics of tree and shrub vegetation in the Polar Urals mountains under the influence of modern climate change. Ural Branch of the Russian Academy of Sciences.
60. Shiyatov S.G., Mazepa V.S., Moiseev P.A. and Bratukhina M. Yu. (2001). Climate change and its impact on mountain ecosystems of the national park. Impact of climate change on ecosystems. Protected Natural Areas of Russia: analysis of long-term observations, 2, 16–31.
61. Shiyatov S.G., Terentyev M.M. and Fomin V.V. (2005). Spatiotemporal dynamics of forest-tundra communities in the Polar Urals. Russian Journal of Ecology, 36(2), 69–75.
62. Shrestha K.B., Hofgaard A. and Vandvik V. (2015). Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. Journal of Plant Ecology, 8(4), 347–358. DOI: 10.1093/jpe/rtu035
63. Singh C.P., Panigrahy S., Thapliyal A., Kimothi M.M., Soni P. and Parihar J.S. (2012). Monitoring the alpine treeline shift in parts of the Indian Himalayas using remote sensing. Current Science, 102(4), 558–562.
64. Snethlage M.A., Geschke J., Ranipeta A., Jetz W., Yoccoz N.G., Körner C., Spehn E.M., Fischer M. and Urbach D. (2022). A hierarchical inventory of the world’s mountains for global comparative mountain science. Scientific Data, 9(1), 149, DOI: 10.1038/s41597-022-01256-y
65. Steinbauer M.J., Field R., Grytnes J., Trigas P., Ah-Peng C., Attorre F., Birks H.J.B., Borges P.A. V., Cardoso P., Chou C., De Sanctis M., de Sequeira M.M., Duarte M.C., Elias R.B., Fernández-Palacios J.M., Gabriel R., Gereau R.E., Gillespie R.G., Greimler J., … Beierkuhnlein C. (2016). Topography-driven isolation, speciation and a global increase of endemism with elevation. Global Ecology and Biogeography, 25(9), 1097–1107, DOI: 10.1111/geb.12469
66. Steiner M. (1935). Winterliches Bioklima und Wasserhaushalt an der alpinen Waldgrenze. Bioklim Beiblätter, 2, 57–65.
67. Sushma, P., Singh, C.P., Kimothi, M.M., Soni, P. and Parihar J.S. (2010). The upward migration of alpine vegetation as an indicator of climate change: observations from Indian Himalayan region using remote sensing data. Bulletin of the National Natural Resources Management System NNRMS.
68. Vladimirov N. (2014). Dynamics of the timberline at the Baikal range. Izvestiya Irkutskogo Gosudarstvennogo Universitet. Series: Earth Sciences, 10, 46–56, (in Russian with English summary).
69. Wang D., Li S. and Gao S. (2022). Distribution Characteristics of the Alpine Treeline and Vegetation Response to Climate Change of Taibai Mountain, China. Geofluids, 2022(May 2009), 1–12, DOI: 10.1155/2022/4517515
70. Wang Z., Ginzler C., Eben B., Rehush N. and Waser L.T. (2022). Assessing Changes in Mountain Treeline Ecotones over 30 Years Using CNNs and Historical Aerial Images. Remote Sensing, 14(9), 2135, DOI: 10.3390/rs14092135
71. Webb Robert H., D.E. Boyer R.M.T. (2010). Repeat Photography: Methods and Applications in the Natural Sciences. https://lccn.loc.gov/2010009377
72. Zhang Yangjian, Xu M., Adams J. and Wang X. (2009). Can Landsat imagery detect tree line dynamics? International Journal of Remote Sensing, 30(5), 1327–1340, DOI: 10.1080/01431160802509009
73. Zhang Yong, Liu L. yu, Liu Y., Zhang M. and An C. Bang. (2021). Response of altitudinal vegetation belts of the Tianshan Mountains in northwestern China to climate change during 1989–2015. Scientific Reports, 11(1), 1–10, DOI: 10.1038/s41598-021-84399-z
74. Zhuravleva O.V., Karanin A.V. (2017). Peculiarities of spatial differentiation of forest ecosystems of the Katun Range. Izvestiya Tula State University. Earth Sciences, 1, 19–27, (in Russian with English summary).
Review
For citations:
Purekhovsky A.G., Gunya A.N., Kolbowsky E.Yu., Aleinikov A.A. Methods Of Studying The Alpine Treeline: A Systematic Review. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(1):105-116. https://doi.org/10.24057/2071-9388-2025-3735