Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

A Review Of Upscaling Algorithms For Flow Direction Rasters

https://doi.org/10.24057/2071-9388-2025-3737

Abstract

Modern Earth system models and global hydrological models require input data in the form of flow direction grids (rasters) with a relatively low resolution. Typical resolution for these models is about 0.5–1°. At high resolution, up to 1 km cell size, flow direction grids are usually generated from digital elevation models (DEMs), but for coarse-resolution grids, more specialized approaches need to be used. In this paper we review upscaling methods for flow direction grids, including grid-based flow tracing, catchment area aggregation and vector network processing. We also indicate methods that have been used to create publicly available datasets in global coverage (DRT and IHU), and provide links to these datasets. The paper also considers methods for estimating the result of flow direction generation on coarse-resolution grids, as well as the results of applying these estimates to existing methods. It is shown that the task of estimating the result requires further development, including the development of new estimation methods and comparative comparison of the most modern upscaling approaches.

About the Authors

Mikhail V. Uzhegov
Department of Cartography and Geoinformatics, Faculty of Geography, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow, 119991



Andrey L. Entin
Department of Cartography and Geoinformatics, Faculty of Geography, Lomonosov Moscow State University
Russian Federation

Leninskie Gory 1, Moscow, 119991



References

1. Danko D.M. (1991). The digital chart of the world project. In: Proceedings of the Eleventh Annual ESRI User Conference, 1, 169–180.

2. Davies H.N. and Bell V.A. (2009). Assessment of Methods for Extracting Low-Resolution River Networks from High-Resolution Digital Data. Hydrological Sciences Journal, 54(1), 17–28. DOI: 10.1623/hysj.54.1.17

3. Decharme B., Alkama R., Douville H., Becker M. and Cazenave A. (2010). Global Evaluation of the ISBA-TRIP Continental Hydrological System. Part II: Uncertainties in River Routing Simulation Related to Flow Velocity and Groundwater Storage. Journal of Hydrometeorology, 11(3), 601–617. DOI: 10.1175/2010JHM1212.1

4. Döll P. and Lehner B. (2002). Validation of a New Global 30-min Drainage Direction Map. Journal of Hydrology, 258(1–4), 214–231. DOI: 10.1016/S0022-1694(01)00565-0

5. Eilander D., Van Verseveld W., Yamazaki D., Weerts A., Winsemius H.C. and Ward P.J. (2021). A Hydrography Upscaling Method for Scale-Invariant Parametrization of Distributed Hydrological Models. Hydrology and Earth System Sciences, 25(9), 5287–5313. DOI: 10.5194/hess-25-5287-2021

6. Fekete B.M., Vörösmarty C.J. and Lammers R.B. (2001). Scaling Gridded River Networks for Macroscale Hydrology: Development, Analysis, and Control of Error. Water Resources Research, 37(7), 1955–1967. DOI: 10.1029/2001WR900024

7. Freeman Т. (1991). Calculating Catchment Area with Divergent Flow Based on a Regular Grid. Computers and Geosciences, 17, 413–422.

8. Jenson S.K. and Domingue J.O. (1988). Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis. Photogrammetric Engineering and Remote Sensing, 54(11), 1593–1600.

9. Lehner B. and Grill G. (2013). Global River Hydrography and Network Routing: Baseline Data and New Approaches to Study the World’s

10. Large River Systems. Hydrological Processes, 27(15), 2171–2186. DOI: 10.1002/hyp.9740

11. Lehner B., Verdin K. and Jarvis A. (2008). New Global Hydrography Derived from Spaceborne Elevation Data. EOS, Transactions American Geophysical Union, 89(10), 93–94.

12. Lin P., Pan M., Beck H.E., Yang Y., Yamazaki D., Frasson R., David C.H., Durand M., Pavelsky T.M., Allen G.H., Gleason C.J. and Wood E.F. (2019). Global Reconstruction of Naturalized River Flows at 2.94 Million Reaches. Water Resources Research, 55(8), 6499–6516. DOI: 10.1029/2019WR025287

13. Lucas-Picher P., Arora V.K., Caya D. and Laprise R. (2003). Implementation of a Large-Scale Variable Velocity River Flow Routing Algorithm in the Canadian Regional Climate Model (CRCM). Atmosphere - Ocean, 41(2), 139–153. DOI: 10.3137/ao.410203

14. Mayorga E., Logsdon M.G., Ballester M.V.R. and Richey J.E. (2005). Estimating Cell-to-Cell Land Surface Drainage Paths from Digital Channel Networks, with an Application to the Amazon Basin. Journal of Hydrology, 315(1–4), 167–182. DOI: 10.1016/j.jhydrol.2005.03.023

15. Miller J.R., Russell G.L. and Caliri G. (1994). Continental-Scale River Flow in Climate Models. Journal of Climate, 7(6), 914–928. DOI: 10.1175/1520-0442(1994)007<0914:CSRFIC>2.0.CO;2

16. O’Callaghan J.F. and Mark D.M. (1984). The Extraction of Drainage Networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28(3), 323–344.

17. O’Donnell G., Nijssen B. and Lettenmaier D.P. (1999). A Simple Algorithm for Generating Streamflow Networks for Grid-Based, Macroscale Hydrological Models. Hydrological Processes, 13(8), 1269–1275. DOI: 10.1002/(SICI)1099-1085(19990615)13:8<1269::AID-HYP806>3.0.CO;2-R

18. Oki T. and Sud Y.C. (1998). Design of Total Runoff Integrating Pathways (TRIP)—A Global River Channel Network. Earth Interactions, 2(1), 1–37. DOI: 10.1175/1087-3562(1998)002<0001:dotrip>2.3.co;2

19. Olivera F., Lear M.S., Famiglietti J.S. and Asante K. (2002). Extracting Low-Resolution River Networks from High-Resolution Digital Elevation Models. Water Resources Research, 38(11), 13-1-13–18. DOI: 10.1029/2001wr000726

20. Olivera F. and Raina R. (2003). Development of Large Scale Gridded River Networks from Vector Stream Data. Journal of the American Water Resources Association, 39(5), 1235–1248. DOI: 10.1111/j.1752-1688.2003.tb03705.x

21. Panda J. and Meher S. (2024). Recent Advances in 2D Image Upscaling: A Comprehensive Review. SN Computer Science, 5(6). DOI: 10.1007/s42979-024-03070-2

22. Pappenberger F., Cloke H.L., Balsamo G., Ngo-Duc T. and Oki T. (2010). Global Runoff Routing with the Hydrological Component of the ECMWF NWP System. International Journal of Climatology, 30(14), 2155–2174. DOI: 10.1002/joc.2028

23. Paz A.R., Collischonn W. and Lopes da Silveira A.L. (2006). Improvements in Large-Scale Drainage Networks Derived from Digital Elevation Models. Water Resources Research, 42(8), 1–7. DOI: 10.1029/2005WR004544

24. Peng J., Loew A., Merlin O. and Verhoest N.E.C. (2017). A Review of Spatial Downscaling of Satellite Remotely Sensed Soil Moisture. Reviews of Geophysics, 55(2), 341–366. DOI: 10.1002/2016RG000543

25. Qin C.-Z., Ai B.-B., Zhu A.-X. and Liu J.-Z. (2017). An Efficient Method for Applying a Differential Equation to Deriving the Spatial Distribution of Specific Catchment Area from Gridded Digital Elevation Models. Computers and Geosciences, 100(2), 94–102. DOI: 10.1016/j.cageo.2016.12.009

26. Quinn P., Beven K., Chevallier P. and Planchon O. (1991). The Prediction of Hillslope Flow Paths for Distributed Hydrological Modelling Using Digital Terrain Models. Hydrological Processes, 5(1), 59–79. DOI: 10.1002/hyp.3360050106

27. Reed S.M. (2003). Deriving Flow Directions for Coarse-Resolution (1-4 km) Gridded Hydrologic Modeling. Water Resources Research, 39(9), 1–11. DOI: 10.1029/2003WR001989

28. Sood A. and Smakhtin V. (2015). Global Hydrological Models: a Review. Hydrological Sciences Journal, 60(4), 549–565. DOI: 10.1080/02626667.2014.950580

29. Tarboton D.G. (1997). A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models. Water Resources Research, 33(2), 309–319.

30. Thober S., Cuntz M., Kelbling M., Kumar R., Mai J. and Samaniego L. (2019). The Multiscale Routing Model mRM v1.0: Simple River Routing at Resolutions from 1 to 50 km. Geoscientific Model Development, 12(6), 2501–2521. DOI: 10.5194/gmd-12-2501-2019

31. Vörösmarty C.J., Fekete B.M., Meybeck M. and Lammers R.B. (2000). Geomorphometric Attributes of the Global System of Rivers at 30-minute Spatial Resolution. Journal of Hydrology, 237(1–2), 17–39. DOI: 10.1016/S0022-1694(00)00282-1

32. Wu H., Kimball J.S., Li H., Huang M., Leung L.R. and Adler R.F. (2012). A New Global River Network Database for Macroscale Hydrologic Modeling. Water Resources Research, 48(9), 1–5. DOI: 10.1029/2012WR012313

33. Wu H., Kimball J.S., Mantua N. and Stanford J. (2011). Automated Upscaling of River Networks for Macroscale Hydrological Modeling. Water Resources Research, 47(3), 1–18. DOI: 10.1029/2009WR008871

34. Yamazaki D., Ikeshima D., Sosa J., Bates P.D., Allen G.H. and Pavelsky T.M. (2019). MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resources Research, 55(6), 5053–5073. DOI: 10.1029/2019WR024873

35. Yamazaki D., Oki T. and Kanae S. (2009). Deriving a Global River Network Map and Its Sub-Grid Topographic Characteristics from a Fine-Resolution Flow Direction Map. Hydrology and Earth System Sciences, 13(11), 2241–2251. DOI: 10.5194/hess-13-2241-2009.


Review

For citations:


Uzhegov M.V., Entin A.L. A Review Of Upscaling Algorithms For Flow Direction Rasters. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2025;18(1):89-96. https://doi.org/10.24057/2071-9388-2025-3737

Views: 152


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)