Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Surface ozone in the industrial city of Chelyabinsk, Russia

https://doi.org/10.24057/2071-9388-2024-3364

Abstract

This work studies the variations in daily and seasonal concentrations of surface ozone (O3), and nitrogen oxides (NO and NO 2) as its precursors in Chelyabinsk, a large industrial city in Russia. A monitoring station located outside the zone of influence of large industrial and transport local sources of air pollution was chosen for the research. The research was carried out during 2019, which can also be considered as a “background” period, because in 2020, during the COVID-19 lockdown, there was a decrease in concentrations of precursors. However, in 2022–2024 concentrations of precursors increased due to increased production capacity. Daily O3 variations are characterized by three peaks that correlate with changes in concentrations of nitrogen oxides (NOx) determined by peak loads and emission intensity of thermal power stations. There are two seasonal peaks of surface O3 concentrations. The spring peak in March is caused by natural processes. In March 2019, an advection of an air mass with different properties and gas composition was observed from areas with powerful sources of precursor gases or saturated with O3 from the south (areas in Kazakhstan). During episodes of high O3 levels, Chelyabinsk was located on the crest of a cyclone, in the warm sector, where low-level jets formed. The summer maximum of surface O3 in June was caused by photochemical reactions during anticyclones and prolonged inversions.

About the Authors

Tatyana G. Krupnova
Institute of Natural Sciences and Mathematics, South Ural State University
Russian Federation

76 Prospect Lenina, Chelyabinsk, 454080



Olga V. Rakova
Institute of Natural Sciences and Mathematics, South Ural State University
Russian Federation

76 Prospect Lenina, Chelyabinsk, 454080



Valeria I. Simakhina
Institute of Natural Sciences and Mathematics, South Ural State University
Russian Federation

76 Prospect Lenina, Chelyabinsk, 454080



Ekaterina A. Vykhodtseva
Chelyabinsk Center for Hydrometeorology and Environmental Monitoring, Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet)
Russian Federation

15 Vitebskaya st., Chelyabinsk, 454080



Valeriy M. Kochegorov
Chelyabinsk Center for Hydrometeorology and Environmental Monitoring, Federal Service for Hydrometeorology and Environmental Monitoring (Rosgidromet)
Russian Federation

15 Vitebskaya st., Chelyabinsk, 454080



References

1. Andreev V.V., Arshinov M.Y., Belan B.D., Davydov D.K., Elansky N.F., Zhamsueva G.S. et al. (2021). Surface ozone concentration over Russian territory in the first half of 2020. Atmospheric and Oceanic Optics, 33(6), 671-681, DOI: 10.1134/S1024856020060184.

2. Andreev V.V., Arshinov M.Y., Belan B.D. et al. (2022). Tropospheric ozone concentration on the territory of Russia in 2021. Atmospheric and Oceanic Optics, 35(6), 741-757, DOI: 10.1134/S1024856022060033.

3. Antokhin P.N., Antokhina O.Yu., Antonovich V.V., Arshinova V.G., Arshinov M.Yu., Belan B.D., Belan S.B., Davydov D.K., Dudorova N.V., Ivlevв G.A. , Kozlov A.V. , Pestunov D.A., Rasskazchikova T.M., Savkin D.E., Simonenkov D.V. , Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. (2020). Correlation between the dynamics of atmospheric composition and meteorological parameters near Tomsk. Atmospheric and Oceanic Optics, 33(7), 529-537. DOI: 10.15372/AOO20200705

4. Belan B.D. (2010). Ozone in the troposphere. Tomsk: Publishing House of the Institute of Atmospheric Optics SB RAS.

5. Berezina E., Moiseenko K., Skorokhod A., Pankratova N.V., Belikov I., Belousov V. and Elansky N.F. (2020). Impact of VOCs and NOx on ozone formation in Moscow. Atmosphere, 11, 1262, DOI: 10.3390/atmos11111262.

6. Chubarova N.Ye., Androsova Ye.Ye., and Lezina Ye.A. (2021). The dynamics of the Atmospheric pollutants during the Covid-19 Pandemic 2020 and their relationship with meteorological conditions in Moscow. Geography, Environment, Sustainability, 14(4), DOI: 10.24057/2071-9388-2021-012.

7. Colombi N.K., Jacob D.J., Yang L.H., Zhai S., Shah V. et al. (2023). Why is ozone in South Korea and the Seoul metropolitan area so high and increasing? Atmospheric Chemistry and Physics, 23, 4031-4044. DOI: 10.5194/acp-23-4031-2023.

8. Di Bernardino A., Mevi G., Iannarelli A.M., Falasca S., Cede A., Tiefengraber M. and Casadio S. (2023). Temporal variation of NO2 and O3 in Rome (Italy) from Pandora and in situ measurements. Atmosphere, 14(3), 594, DOI: 10.3390/atmos14030594.

9. Fallmann J., Forkel R. and Emeis S. (2016). Secondary effects of urban heat island mitigation measures on air quality. Atmospheric Environment, 125, 199-211, DOI: 10.1016/j.atmosenv.2015.10.094.

10. Geng F., Tie X., Guenther A., Li G. et al. (2011). Effect of isoprene emissions from major forests on ozone formation in the city of Shanghai, China. Atmospheric Chemistry and Physics, 11, 10449-10459, DOI: 10.5194/acpd-11-18527-2011.

11. Kim S., Sanchez D., Wang M., Seco R. et al. (2016). OH reactivity in urban and suburban regions in Seoul, South Korea - an East Asian megacity in a rapid transition. Faraday Discussions, 18(189), 231-51, DOI: 10.1039/c5fd00230c.

12. Knight T., Price S., Bowler D. et al. (2021). How effective is ‘greening’ of urban areas in reducing human exposure to ground-level ozone concentrations, UV exposure and the ‘urban heat island effect’? An updated systematic review. Environmental Evidence, 10, 12, DOI: 10.1186/s13750-021-00226-y.

13. Krupnova T.G., Rakova O.V., Plaksina A.L., Gavrilkina S.V., Baranov E.O. and Abramyan A.D. (2020). Effect of urban greening and land use on air pollution in Chelyabinsk, Russia. Biodiversitas, 21, 2716-2720. DOI: 10.13057/biodiv/d210646.

14. Lee K.-Y., Kwak K.-Y., Ryu Y.-H., Lee S.-H. and Baik J.-J. (2014). Impacts of biogenic isoprene emission on ozone air quality in the Seoul metropolitan area. Atmospheric Environment, 96, 209-219, DOI: 10.1016/j.atmosenv.2014.07.036.

15. McGenity T.J., Crombie A.T. and Murrell J.C. (2018). Microbial cycling of isoprene, the most abundantly produced biological volatile organic compound on Earth. International Society for Microbial Ecology, 12, 931-941, DOI: 10.1038/s41396-018-0072-6.

16. Moiseenko K.B., Vasileva A.V., Skorokhod A.I., Belikov I.B., Repin A.Yu. and Shtabkin Yu.A. (2021). Regional impact of ozone precursor emissions on NO X and O3 levels at ZOTTO tall tower in central Siberia, Earth Space Sci, 8, 2021EA001762, DOI: 10.1029/2021EA001762.

17. Nuvolone D., Petri D. and Voller F. (2018). The effects of ozone on human health. Environmental Science and Pollution Research, 25(5), DOI: 10.1007/s11356-017-9239-3.

18. Nguyen D.-H., Lin Ch., Vu C.-T., Cheruiyot N.K., Nguyen M.K., Le T.H., Lukkhasorn W., Vo T.-D.-H. and Bui X.-T. (2022). Tropospheric ozone and NO x: A review of worldwide variation and meteorological influences. Environmental Technology and Innovation, 28, 102809, DOI: 10.1016/j.eti.2022.102809.

19. Ouyang S., Deng T., Liu R. et al. (2022). Impact of a subtropical high and a typhoon on a severe ozone pollution episode in the Pearl River Delta, China. Atmospheric Chemistry and Physics, 22, 10751-10767, DOI: 10.5194/acp-22-10751-2022.

20. Rawat K. and Matta G. (2021). Ozone: Risk assessment, environmental, and health hazard. In: Singh J(ed) Hazardous Gases: Risk Assessment on Environment and Human Health, Academic Press, 301-312.

21. Ren X., Wen Y., He Q., Cui Y. et al. (2021). Higher contribution of coking sources to ozone formation potential from volatile organic compounds in summer in Taiyuan, China. Atmospheric Pollution Research, 12(6), 101083, DOI: 10.1016/j.apr.2021.101083.

22. Rosenkranz M., Chen Y., Zhu P. and Vlot A.C. (2021). Volatile terpenes - mediators of plant-to-plant communication. Plant, 108(3), 617-631, DOI: 10.1111/tpj.15453.

23. Salonen H., Salthammer T. and Morawska L. (2018). Human exposure to ozone in school and office indoor environments. Environment International, 119, 503-514, DOI: 10.1016/j.envint.2018.07.012.

24. Simakina T.E. and Kryukova S.V. (2020). Spatio-temporal distribution of surface ozone in Saint Petersburg, Gidrometeorologiya i Ekologiya. Hydrometeorology and Ecology, 61, 407-420 (In Russian), DOI: 10.33933/2074-2762-2020-61-407-420.

25. Simon H., Fallmann J., Kropp T., Tost H. and Bruse M. (2019). Urban trees and their impact on local ozone concentration-a microclimate modeling study. Atmosphere, 10(3), 154, DOI: 10.3390/atmos10030154.

26. Thorp T., Arnold S.R., Pope R.J., Spracklen D.V. et al. (2021). Late-spring and summertime tropospheric ozone and NO2 in Western Siberia and the Russian Arctic: regional model evaluation and sensitivities. Atmospheric Chemistry and Physics, 21, 4677-4697, DOI: 10.5194/acp-21-4677-2021.

27. Virolainen Ya.A., Ionov D.V. and Polyakov A.V. (2023). Analysis of long-term measurements of tropospheric ozone at the St. Petersburg State University Observational site in Peterhof, Izvestiya, Atmospheric and Oceanic Physics, 59(3), 287-295, DOI: 10.1134/S000143382303009X.

28. Wang J., Dong J., Guo J., Cai P., Li R., Zhang X., Xu Q. and Song X. (2023). Understanding temporal patterns and determinants of groundlevel ozone. Atmosphere, 14(3), 604, DOI: 10.3390/atmos14030604.

29. Watson L., Wang K.-Y., Hamer P. and Shallcross D. (2006). The potential impact of biogenic emissions of isoprene on urban chemistry in the United Kingdom. Atmospheric Science Letters, 7, 96-100, DOI: 10.1002/asl.140.

30. Xie Y., Cheng Ch., Wang Z., Wang K., Wang Yu. et al. (2021). Exploration of O3-precursor relationship and observation-oriented O3 control strategies in a non-provincial capital city, southwestern China. Science of the Total Environment, 800, 149422, DOI: 10.1016/j.scitotenv.2021.149422.

31. Zhang J., Wei Y. and Fang Z. (2019). Ozone pollution: a major health Hazard worldwide. Frontiers in Immunology, 10, 2518, DOI: 10.3389/fimmu.2019.02518.


Review

For citations:


Krupnova T.G., Rakova O.V., Simakhina V.I., Vykhodtseva E.A., Kochegorov V.M. Surface ozone in the industrial city of Chelyabinsk, Russia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2024;17(4):223-234. https://doi.org/10.24057/2071-9388-2024-3364

Views: 285


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)