Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Monitoring For Elemental Composition Of Particulate Matter Deposited In Snow Cover Around Coal-Fired Thermal Power Plant (Karaganda, Central Kazakhstan).

https://doi.org/10.24057/2071-9388-2023-2829

Abstract

Studies on thermal power plant areas with respect to chemical composition of particulate matter deposited in snow cover are limited. This study aims to monitor (2014–2022) particulate load and trace elements associated with the particulate matter distributed around (0.5-4.5 km) the coal-fired thermal power plant in Karaganda. In this study, snow cover was used as an effective scavenger of atmospheric pollutants. Using instrumental neutron activation analysis and atomic absorption spectrometry, the content of 26 elements and Hg, respectively, was determined in the particulate phase of snow. The results showed that particulate load varied from 26 to 1751, with mean of 427 and a background of 47 mg m-2 d-1. Anthropogenic impact caused a significant increase in content of U, Hg, Ta, Zn, Na, Cr, Co, Sr, Rb, Cs, Sc, Ca, Fe, Nd, Ba (2–30 times) in the samples compared to the background. Metal-bearing phases of Zn, Ba, As, U-Ta-Nb were detected through scanning electron microscope. The highest levels of particulate load (169–1032 mg m-2 d-1) and element contents in the samples were localized up to 0.7 km from the thermal power plant. The changes of particulate load and element composition of snow deposits during the monitoring period were connected with temperature, modernization of dust-collecting equipment, composition of coal and fly ash, long-range transport of emissions from other industries. The element content and metal-bearing phases in the particulate phase of snow can be used as markers for identifying emission sources from coal combustion.

About the Authors

A. V. Talovskaya
National Research Tomsk Polytechnic University
Russian Federation

30 Lenin Ave., 634050, Tomsk



T. E. Adil’bayeva
National Research Tomsk Polytechnic University
Russian Federation

30 Lenin Ave., 634050, Tomsk



E. G. Yazikov
National Research Tomsk Polytechnic University
Russian Federation

30 Lenin Ave., 634050, Tomsk



References

1. Adil’Bayeva T.E., Talovskaya A.V., Yazikov E.G. (2017). Estimation of aerotechnical pollution in the vicinity of the thermal power plant (TPP-3) in Karaganda according to snow survey (Republic of Kazakhstan). News of the National Academy of Sciences of the Republic of Kazakhstan, Series of Geology and Technical Sciences, 4(424), pp. 237–247

2. Amangeldykyzy A., Kopobayeva A., Askarova N., Ozhigin D., Portnov V. S. (2021). Study of rare earth elements in the coals of the Shubarkol deposit. Complex Use of Mineral Resources, 4, 319, pp. 48-56, DOI:10.31643/2021/6445.40

3. Ambade B. (2014). Seasonal variation and sources of heavy metals in hilltop of Dongargarh, Central India. Urban Climate, 9, рр. 155–165, DOI: http://dx.doi.org/10.1016/j.uclim.2014.08.001

4. Arbuzov S.I. and Ershov V.V. (2007). Geochemistry of rare elements in coals of Siberia. Tomsk: D-Print (in Russian)

5. Arbuzov S.I., Chekryzhov R.B., Finkelman Y.Z., Sun C., Zhao L., Il’enok S.S., Blokhin M.G., Zarubina N.V. (2019). Comments on the geochemistry of rare-earth elements (La, Ce, Sm, Eu, Tb, Yb, Lu) with examples from coals of north Asia (Siberia, Russian far East, North China, Mongolia, and Kazakhstan). International Journal of Coal Geology, 206, pp. 106–120, DOI:10.1016/J.COAL.2018.10.013

6. Arbuzov S.I., Il’enok S.S., Mashenkin V.S., Sun Y. (2016). Rare earth elements in the late Paleozoic coals of north Asia (Siberia, Northern China, Mongolia, Kazakhstan). Bulletin of the Tomsk Polytechnic University Geo Assets Engineering, 327, 8, pp. 74-88 (in Russian with English summary)

7. Arbuzov S.I., Volostnov A.V., Mezhibor A.M., Rybalko V.I., Ilenok S.S. Scandium (Sc) geochemistry in coals (Siberia, Russian Far East, Mongolia, Kazakhstan, and Iran) (2014). International Journal of Coal Geology, 125, pp. 22–35, DOI: http://dx.doi.org/10.1016/j.coal.2014.01.008

8. Artamonova Yu. (2020). Uranium and thorium in aerosol fallout of Novosibirsk city and its vicinity (West Siberia). Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 331 (7), pp. 212–223, DOI: 10.18799/24131830/2020/7/2731 (in Russian with English summary)

9. Baltrėnaitė E., Baltrėnas P., Lietuvninkas A., Šerevičienė V. and Zuokaitė E. (2014). Integrated evaluation of aerogenic pollution by air-transported heavy metals (Pb, Cd, Ni, Zn, Mn and Cu) in the analysis of the main deposit media. Environmental science and pollution research, 21, pp. 299–313, DOI: 10.1007/s11356-013-2046-6

10. Belyaev S.P., Beschastnov S.P., Khomushku G.M., Morshina T.I., Shilina A.I. (1997). Some patterns of pollution of the natural environment by combustion products of coal on the example of Kyzyl. Meteorology and hydrology, 12, pp. 54–63 (in Russian)

11. Bortnikova S.B., Raputa V.F., Devyatova A.Yu., Yudakhin F.N. (2009). Methods of analyzing data on the snow cover contamination in the areas affected by industrial enterprises (by the example of Novosibirsk). Geologiya. Gidrogeologiya. Geokriologiya, 6, pp. 515–525 (in Russian)

12. Carpi A. (1997). Mercury from combustion sources: A review of the chemical species emitted and their transport in the atmosphere. Water, air and soil pollution, 98, 3–4, pp. 241–254, DOI: 10.1007/BF02047037

13. Córdoba P., Ochoa-González R., Font O., Izquierdo M., Querol X., Leiva C., López-Antón M.A., Díaz-Somoano M., Martinez-Tarazona M.R., Fernandez C., Tomás A. (2012). Partitioning of trace inorganic elements in a coal-fired power plant equip pedwithawet flue gas desulphurization system. Fuel, 92, pp. 145–157

14. Czech T., Marchewicz A., Sobczyk A.T., Krupa A., Jaworek A., Śliwiński Ł., Rosiak D. (2020). Heavy metals partitioning in fly ashes between various stages of electrostatic precipitator after combustion of different types of coal. Process Safety and Environmental Protection, 133, pp. 18–31, DOI:10.1016/j.psep.2019.10.033

15. Dai S., Ren D., Chou C.-L., Finkelman R. B., Seredin V. V., Zhou Y. (2012). Geochemistry of trace elements in Chinese coals: A review of abundances, genetic types, impacts on human health, and industrial utilization. International Journal of Coal Geology, 94, pp. 3–21, DOI: 10.1016/j.coal.2011.02.003

16. Ensuring reliable and high-quality energy supply. Kazakhstan Municipal Systems LLP (KKS), Annual Report 2016. Available at: https://kus.kz/ru/investori/godovye-otchety [Accessed 12 Feb. 2023] (in Russian)

17. Eremina I.D., Vasil’chuk J.Yu. (2019). Temporal variations in chemical composition of snow cover in Moscow. Geography, Environment, Sustainability, 12(4), pp. 148–158, DOI: 10.24057/2071-9388-2019-79

18. Farkhutdinov I., Soktoev B., Zlobina A., Farkhutdinov A., Zhang C., Chesalova E., Belan L., Volfson I. (2021). Influences of geological factors on the distribution of uranium in drinking water limescale in the junction zone of the East European platform and the Southern Urals. Chemosphere, 282, article number 131106, DOI: 10.1016/j.chemosphere.2021.131106

19. Filimonenko E.A., Lyapina E.E., Talovskaya A.V., Parygina I.A. (2014). Eco-geochemical peculiarities of mercury content in solid residue of snow in the industrial enterprises impacted areas of Tomsk. In: Proc. of SPIE 9292, 20th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics, Volume 929231. Available at: https://doi.org/10.1117/12.2075637

20. Filimonova L.M., Parshin A.V., Bychinskii V.A. (2015). Air pollution assessment in the area of aluminum production by snow geochemical survey. Russian Meteorology and Hydrology, 40 (10), pp. 691–698, DOI:10.3103/S1068373915100076

21. Finkelman R.B., Palmer C.A., Wang P. (2018). Quantification of the Modes of Occurrence of 42 Elements in Coal. International Journal of Coal Geology, 185, рр. 138–160

22. Gaberšek M. and Gosar M. (2021). Meltwater chemistry and characteristics of particulate matter deposited in snow as indicators of anthropogenic influences in an urban area. Environ Geochem Health, 43, pр. 2583–2595, DOI: 10.1007/s10653-020-00609-z

23. Goodarzi F. (2006). Morphology and chemistry of fine particles emitted from a Canadian coal-fired power plant. Fuel, 85(3), pp. 273–280, DOI:10.1016/j.fuel.2005.07.004

24. Golokhvast K.S. and Shvedova A.A. (2014). Galvanic manufacturing in the cities of Russia: potential source of ambient nanoparticles. PLOS ONE, 9(10), number of article e110573, DOI: 10.1371/journal.pone.0110573

25. Golokhvast K.S., Chernyshev V.V., Chaika V.V., Ugay S.M., Zelinskaya E.V., Tsatsakis A.M., Karakitsios S.P., Sarigiannis D.A. (2015). Size-segregated emissions and metal content of vehicle-emitted particles as a function of mileage: implications to population exposure. Environmental Research, 142, pp. 479–485, DOI: 10.1016/j.envres.2015.07.018

26. Grebenshchikova V.I., Efimova N.V., Doroshko A.A. (2017). Chemical composition of snow and soil in Svirsk city (Irkutsk Region, Pribaikal’e). Environmental Earth Sciences, 76, 712, DOI: https://doi.org/10.1007/s12665-017-7056-0

27. Gustaytis M.A., Myagkaya I.N. Chumbaev A.S. (2018). Hg in snow cover and snowmelt waters in high-sulfide tailing regions (Ursk tailing dump site, Kemerovo region, Russia). Chemosphere, 202, pp. 446–459, DOI: 10.1016/j.chemosphere.2018.03.076

28. Hou Y., Dai S., Nechaev V.P., Finkelman R.B., Wang H., Zhang S., Di S. (2023). Mineral matter in the Pennsylvanian coal from the Yangquan Mining District, northeastern Qinshui Basin, China: Enrichment of critical elements and a Se-Mo-Pb-Hg assemblage. International Journal of Coal Geology, 266, p. 178, DOI: 10.1016/j.coal.2022.104178

29. Ianchenko N.I. and Kotova E.I. (2022). Methodological aspects of snow cover sampling for chemical analysis. Pure and Applied Chemistry, 94(3), pp. 303–307, DOI: 10.1515/pac-2021-0310

30. Ianchenko N.I., Kondratiev V.V., Verkhoturov V.V. (2016). Features of the elemental composition of snow cover in the area of production

31. primary aluminum emissions. In the collection: Proceedings of SPIE. The International Society for Optical Engineering, p. 1003563, DOI: 10.1117/12.2248867

32. International Energy Outlook (IEO), (2023). International Energy Outlook Official Website. [online] Available at: https://www.iea.org/reports/world-energy-outlook-2022 [Accessed 13 Feb. 2023]

33. Jayasekher T. (2009). Aerosols near by a coal fired thermal power plant: Chemical composition and toxic evaluation. Chemosphere, 75, pp. 1525–1530, DOI: 10.1016/j.chemosphere.2009.02.001

34. Kalmykov D.E. and Malikova A.D. (2017). Driven into coal. Center for the Introduction of New Environmentally Friendly Technologies (KINECT). Available at: https://bankwatch.org/wp-content/uploads/2018/01/KZ-Coal_RU.pdf (in Russian)

35. Karaganda thermal power plant. Available at: https://ru.wikipedia.org/wiki [Accessed 07 Feb. 2023] (in Russian)

36. Kasimov N.S., Kosheleva N.E., Vlasov D.V., Terskaya E.V. (2012). Geochemistry of snow cover within the eastern district of Moscow. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 4, pp. 14–24 (in Russian with English summary)

37. Krastinyte V., Baltrenaite E., Lietuvninkas A. (2013). Analysis of snow-cap pollution for air quality assessment in the vicinity of an oil refinery. Environmental Technology, 34 (6) pp. 757–763, DOI: 10.1080/09593330.2012.715758

38. Krickov I.V., Lim A.G., Vorobyev S. N., Shevchenko V.P., Pokrovsky O.S. (2022). Colloidal associations of major and trace elements in the snow pack across a 2800-km south-north gradient of western Siberia. Chemical Geology, 610, article number 121090, DOI: https://doi.org/10.1016/j.chemgeo.2022.121090

39. Krylov D.A. (2017). Negative impact impurity elements from coal-fired thermal power plants to the environment and human health. Gornyy informatsionno-analiticheskiy byulleten (12), pp. 77–87, DOI: 10.25018/0236-1493-2017-12-0-77-87 (in Russian)

40. Lanzerstorfer C. (2018). Fly ash from coal combustion: Dependence of the concentration of various elements on the particle size. Fuel, 228, pp. 263–271, DOI: 10.1016/j.fuel.2018.04.136

41. Magiera T., Jabnska M., Strzyszcz Z., Rachwal M. (2011). Morphological and mineralogical forms of technogenic magnetic particles in industrial dusts. Atmospheric Environment, 45, pp. 4281–4290, DOI: 10.1016/j.atmosenv.2011.04.076

42. Mezhibor A.M., Arbuzov S I., Rikhvanov L.P. (2009). Accumulation and average contents of trace elements in the high-moor peat of Tomsk Region (Western Siberia, Russia). Energy Exploration & Exploitation, 27 (6), pp. 401–410, DOI: 10.1260/0144-5987.27.6.401

43. Miler M. and Gosar M. (2015). Chemical and morphological characteristics of solid metal-bearing phases deposited in snow and stream sediment as indicators of their origin. Environmental Science Pollution Research, 22(3), pp. 1906–1918, DOI: 10.1007/s11356-014-3589-x

44. Nemmar A., Hoet P.H., Vanquickenborne B. (2002). Passage of inhaled particles into the blood circulation in humans. Circulation, 105, pp. 411–414, DOI: 10.1161/hc0402.104118

45. Panin M.S. and Azhaev G.S. (2006). Geochemical characteristics of solid atmospheric precipitation on the territory of Pavlodar, Republic of Kazakhstan according to the study of snow cover pollution. Bulletin of Tomsk State University, 292 (1), pp. 163–170 (in Russian)

46. Pozhitkov R., Moskovchenko D., Soromotin A., Kudryavtsev A., Tomilova E. (2020). Trace elements composition of surface snow in the polar zone of northwestern Siberia: the impact of urban and industrial emissions. Environmental Monitoring Assessment, 192(4), pp. 192–215. DOI: https://doi.org/10.1007/s10661-020-8179-4

47. Raputa V.F., Kokovkin V.V., Shuvaeva O.V. (2020). The study of aerosol deposition in the environ of TPP-5 in Novosibirsk. Proceedings of SPIE - 26th International Symposium on Atmospheric and Ocean Optics, Atmospheric Physics, article num. 115604R, DOI: 10.1117/12.2575606

48. Russian State Standard for air pollution control. RD 52.04.186-89. Available at: http://docs.cntd.ru/document/1200036406 [Accessed 15 Dec. 2012] (in Russian)

49. Saet Y, Revich B.A, Janin E.P, et al. (1990). Environmental geochemistry. Moscow: Nedra (in Russian)

50. Shevchenko V.P., Vorobyev S.N., Krickov I.V., Boev A.G., Lim A.G., Novigatsky A.N., Starodymova D.P., Pokrovsky O.S. (2020). Insoluble particles in the snowpack of the Ob river basin (Western Siberia) a 2800 km submeridional profile. Atmosphere, 11, article number 1184, DOI: 10.3390/atmos11111184

51. Schwarze P.E. (2006). Particulate matter properties and health effects: consistency of epidemiological and toxicological studies. Human & Experimental Toxicology, 25 (10), pp. 559– 579, DOI: 10.1177/096032706072520

52. Soktoev B.R., Rikhvanov L.P., Taisaev T.T., Baranovskaya N.V. (2014). Geochemical characteristics of drinking water salt deposits of Baikal region. Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 324 (1), pp. 209–223 (in Russian with English summary)

53. Sorokina O.I., Kosheleva N.E., Kasimov N.S., Golovanov D.L., Bazha S.N., Dorzhgotov D., Enkh-Amgalan S. (2013). Heavy metals in the air and snow cover of Ulan Bator. Geography and Natural Resources, 34 (3), pp. 291–300, DOI: 10.1134/S1875372813030153

54. Sudyko A.F. (2016). Determination of uranium, thorium, scandium and some rare earth elements in twenty-four standard samples of comparison by instrumental neutron activation method. Radioactivity and radioactive elements in the human environment: proceedings of the V International conference. Tomsk: STT, pp. 620–624 (in Russian)

55. Talovskaya A.V., Yazikov E.G., Filimonenko E.A., Lata J.-C., Kim J., Shakhova T.S. (2018). Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia), Environmental Technology, 39 (18), pp. 2288–2303, DOI: 10.1080/09593330.2017.1354075

56. Talovskaya A.V., Yazikov E.G., Osipova N.A., Lyapina E.E., Litay V. V., Metreveli G., Kim J. (2019). Mercury pollution in snow cover around thermal power plants in cities (Omsk, Kemerovo, Tomsk Regions, Russia). Geography, Environment, Sustainability, 12(4), pp. 132–147, DOI-10.24057/2071-9388-2019-58

57. Taraškevičius R., Zinkut R., Gedminien L., Stankevičius Z. (2018). Hair geochemical composition of children from Vilnius kindergartens as an indicator of environmental conditions. Environmental Geochemistry and Health, 40(5), pp. 1817–1840, DOI: 10.1007/s10653-017-9977-7

58. Temirzhanova E., Dyusembaeva M.T., Lukashenko S.N., Yazikov E.G., Shakenov E.Z. (2021). Elemental composition of snow cover solid phase in small settlements (the case of Dolon Village, Republic of Kazakhstan). Bulletin of the Tomsk Polytechnic University, Geo Assets Engineering, 331 (12), pp. 41–50, DOI: 10.18799/24131830/2020/12/2937 (in Russian with English summary)

59. Valeev D., Kunilova I., Alpatov A., Mikhailova A., Goldberg M., Kondratiev A. (2019). Complex utilisation of ekibastuz brown coal fly ash: Iron & carbon separation and aluminum extraction. Journal of Cleaner Production, 218, pp. 192–201, DOI: 10.1016/j.jclepro.2019.01.342

60. Vlasov D., Vasil’chuk N., Kosheleva N., Kasimov N. (2020). Dissolved and suspended forms of metals and metalloids in snow cover of megacity: Partitioning and deposition rates in western Moscow. Atmosphere, 11, article number 907, DOI: 10.3390/atmos11090907

61. Weather in the city of Karaganda. Available at: http://weatherarchive.ru [Accessed 15 Feb. 2023] (in Russian)

62. Witkowska E., Szczepaniak K., Biziuk M. (2005). Some applications of neutron activation analysis: a review. Journal of radioanalytical and nuclear chemistry, 265, pp. 141–150, DOI: 10.1007/s10967-005-0799-1

63. Wu J., Tou F., Guo X., Liu C., Sun Y., Xu M., Liu M., Yang Y. (2021). Vast emission of Fe- and Ti-containing nanoparticles from representative coal-fired power plants in China and environmental implications. Science of The Total Environment, 838, pp. 156–157, DOI: 10.1016/j.scitotenv.2022.156070

64. Zereini F., Alt F., Messerschmidt J., Feldmann I., Bohlen A.V., Muller J., Libel K., Puttmann W. (2005). Concentration and distribution of heavy metals in urban airborne particulate matter in Frankfurt am Main, Germany. Environmental Science Technology, 39, pp. 2983–2989, DOI: 10.1021/es040040t

65. Zhao S., Duan Y., Li Y., Liu M., Lu J., Ding Y., Gu X., Tao J., Du M. (2018). Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel, 214, pp. 597–606, DOI: 10.1016/j.fuel.2017.09.093

66. Zyryanov V.V., Petrov S.A, Matvienko A.A. (2011). Characterization of spinel and magnetospheres of coal fly ashes collected in power plants in the former USSR. Fuel, 90, pp. 486–492, DOI: https://doi.org/10.3390/min10121066


Review

For citations:


Talovskaya A.V., Adil’bayeva T.E., Yazikov E.G. Monitoring For Elemental Composition Of Particulate Matter Deposited In Snow Cover Around Coal-Fired Thermal Power Plant (Karaganda, Central Kazakhstan). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(4):180-192. https://doi.org/10.24057/2071-9388-2023-2829

Views: 627


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)