Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Crop Residues Stimulate Yield-Scaled Greenhouse Gas Emissions In Maize-Wheat Cropping Rotation In A Semi-Arid Climate

https://doi.org/10.24057/2071-9388-2023-2629

Abstract

Mitigating yield-scaled greenhouse gas emissions (YSE) is beneficial for enhancing crop yield, reducing greenhouse gas (GHG) emissions, and advancing climate-smart agronomic management practices. This study aims to evaluate the impact of different crop residue rates– 100% (R100), 50% (R50), and residue removal (R0) – on the YSE indicator within a maize-wheat cropping rotation under both conventional tillage (CT) and no-tillage (NT) systems in a semi-arid region. In the NT system, crop residues had a notable effect on the YSE indicator for wheat. Specifically, R0 exhibited a 39% and 20% decrease in YSE for wheat compared to R100 and R50, respectively. Interestingly, crop residue did not significantly influence YSE for maize under the NT system. On the other hand, in the CT system, YSE for maize in R0 was 33% and 25% lower than that in R100 and R50, respectively. Additionally, compared to R0, there were observed increases of 28% and 20% in YSE for wheat in R100 and R50 under the CT system, respectively. Our findings show that crop residue removal decreases YSE under both CT and NT systems. However, given that this practice degrades soil quality and results in lower yields, it is not considered a sustainable management practice compared to residue retention options. This research highlights the importance of evaluating GHG mitigation strategies by concurrently considering both emissions and crop production. Nevertheless, it is essential to conduct off-site assessments of GHG emissions from crop residue application and also engage in long-term studies to comprehend the full potential of crop residue management on YSE.

About the Authors

M. Mirzaei
University of Tehran; Trinity College Dublin
Russian Federation

Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology

School of Natural Sciences, Botany Discipline

Karaj, Iran

Dublin 2, Ireland



M. G. Anari
University of Tehran
Islamic Republic of Iran

Department of Soil Science and Engineering, Faculty of Agricultural Engineering and Technology

Karaj



M. R. Cherubin
University of São Paulo; University of São Paulo
Brazil

Department of Soil Science, “Luiz de Queiroz” College of Agriculture

Center for Carbon Research in Tropical Agriculture (CCARBON) 

11 Pádua Dias Avenue, Piracicaba, São Paulo 13418-900

11 Alameda das Palmeiras, Piracicaba, São Paulo 13418-900



N. Saronjic
University of Natural Resources and Life Sciences (BOKU)
Australia

Institute of Soil Research, Department of Forest and Soil Sciences

Vienna



S. M. N. Mousavi
Dalhousie University; University of Debrecen
Canada

Department of Plant, Food, and Environmental Sciences, Faculty of Agriculture

Institute of Land Use, Engineering and Precision Farming Technology, Faculty of Agricultural and Food Sciences and
Environmental Management

Halifax, NS B2N 5E3, Canada

138 Böszörményi St., 4032 Debrecen, Hungary



A. Rooien
University of Debrecen
Hungary

Department of Landscape Protection and Environmental Geography, Institute of Earth Science, Faculty of science
and technology

4032 Debrecen



M. Zaman
International Atomic Energy Agency
Austria

Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food &
Agriculture, Department of Nuclear Sciences and Applications

Vienna



A. Caballero-Calvo
University of Granada
Spain

Departamento de Análisis Geográfico Regional y Geografía Física, Facultad de Filosofía y Letras, Campus Universitario de Cartuja

18071 Granada



References

1. Abalos D., Jeffery S., Drury C.F. & Wagner-Riddle, C. (2016). Improving fertilizer management in the US and Canada for N2O mitigation: understanding potential positive and negative side-effects on corn yields. Agric. Ecosyst. Environ. 221 214–21.

2. Al-Shammary, A.A.G., Caballero-Calvo, A., Abbas Jebur, H., Khalbas, M.I. & Fernández-Gálvez, J. (2022). A novel heat-pulse probe for measuring soil thermal conductivity: Field test under different tillage practices. Computers and Electronics in Agriculture, 202, 107414, 1-13. https://doi.org/10.1016/j.compag.2022.107414

3. Al-Shammary, A. A. G., Al-Shihmani, L. S. S., Caballero-Calvo, A., & Fernández-Gálvez, J. (2023). Impact of agronomic practices on physical surface crusts and some soil technical attributes of two winter wheat fields in southern Iraq. Journal of Soils and Sediments, 1-20. https://doi.org/10.1007/s11368-023-03585-w

4. Baggs, E. M., Chebii, J., and J. K. Ndufa (2006). A short-term investigation of trace gas emissions following tillage and no-tillage of agroforestry residues in western Kenya. Soil and Tillage Research. 90(1-2): 69-76.

5. Bao, X., Wen, X., Sun, X., & Bao, G. (2022). The effects of crop residues and air temperature on variations in interannual ecosystem respiration in a wheat-maize crop rotation in China. Agriculture, Ecosystems & Environment, 325, 107728.

6. Battaglia, M., Thomason, W., Fike, J. H., Evanylo, G. K., von Cossel, M., Babur, E., ... & Diatta, A. A. (2021). The broad impacts of corn stover and wheat straw removal for biofuel production on crop productivity, soil health and greenhouse gas emissions: A review. Gcb Bioenergy, 13(1), 45-57.

7. Bayer, C., de Souza Costa, F., Pedroso, G. M., Zschornack, T., Camargo, E. S., de Lima, M. A., ... & Macedo, V. R. M. (2014). Yield-scaled greenhouse gas emissions from flood irrigated rice under long-term conventional tillage and no-till systems in a Humid Subtropical climate. Field Crops Research, 162, 60-69.

8. Blanco-Canqui, H., & Lal, R. (2009). Corn stover removal for expanded uses reduces soil fertility and structural stability. Soil Science Society of America Journal, 73(2), 418-426.

9. Bossio, D. A., Cook-Patton, S. C., Ellis, P. W., Fargione, J., Sanderman, J., Smith, P., ... & Griscom, B. W. (2020). The role of soil carbon in natural climate solutions. Nature Sustainability, 3(5), 391-398.

10. Carvalho, J. L. N., Menandro, L. M. S., de Castro, S. G. Q., Cherubin, M. R., Bordonal, R. D. O., Barbosa, L. C., ... & Castioni, G. A. F. (2019). Multilocation straw removal effects on sugarcane yield in south-central Brazil. BioEnergy Research, 12(4), 813-829.

11. Ceschia, E., Béziat, P., Dejoux, J. F., Aubinet, M., Bernhofer, C., Bodson, B., et al. (2010). Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric. Ecosyst. Environ, 139 (3), 363–383. doi:10.1016/j.agee.2010.09.020.

12. Cherubin, M. R., Bordonal, R. O., Castioni, G. A., Guimaraes, E. M., Lisboa, I. P., Moraes, L. A., ... & Carvalho, J. L. (2021). Soil health response to sugarcane straw removal in Brazil. Industrial Crops and Products, 163, 113315.

13. Cherubin, M. R., Oliveira, D. M. D. S., Feigl, B. J., Pimentel, L. G., Lisboa, I. P., Gmach, M. R., ... & Cerri, C. C. (2018). Crop residue harvest for bioenergy production and its implications on soil functioning and plant growth: A review. Scientia Agricola, 75, 255-272.

14. Choudhury, S.G.; Srivastava, S.; Singh, R.; Chaudhari, S.; Sharma, D.; Singh, S.; Sarkar, D. (2014). Tillage and residue management effects on soil aggregation, organic carbon dynamics and yield attribute in rice–wheat cropping system under reclaimed sodic soil. J. Soil Tillage Res. 136, 76–83.

15. Collins, H.P., P.A. Fay, E. Kimura, S. Fransen, and A. Himes (2017). Intercropping with switchgrass improves net greenhouse gas balance in hybrid poplar plantations on a sand soil. Soil Sci. Soc. Am. J. 81:781–795. doi:10.2136/ sssaj2016.09.0294.

16. Dendooven, L., Patiño-Zúñiga, L., Verhulst, N., Luna-Guido, M., Marsch, R., & Govaerts, B. (2012). Global warming potential of agricultural systems with contrasting tillage and residue management in the central highlands of Mexico. Agriculture, Ecosystems & Environment, 152, 50-58.

17. De Klein, C., & Harvey, M. (2013). Nitrous Oxide Chamber Methodology Guidelines, Global Research Alliance on Agricultural Greenhouse Gases. Publisher: Ministry of Primary Industries, Wellington, New Zealand.

18. Drury, C. F., Woodley, A. L., Reynolds, W. D., Yang, X. M., Phillips, L. A., Rehmann, L., & Calder, W. (2021). Impacts of corn stover removal on carbon dioxide and nitrous oxide emissions. Soil Science Society of America Journal, 85(5), 1334-1348.

19. Essich, L., Nkebiwe, P. M., Schneider, M., & Ruser, R. (2020). Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis. Agriculture, 10(11), 1-20.

20. Essich, L., Nkebiwe, P. M., Schneider, M., & Ruser, R. (2020). Is Crop Residue Removal to Reduce N2O Emissions Driven by Quality or Quantity? A Field Study and Meta-Analysis. Agriculture, 10(11), 1-20.

21. Feng, J., Chen, C., Zhang, Y., Song, Z., Deng, A., Zheng, C., & Zhang, W. (2013). Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: a meta-analysis. Agriculture, Ecosystems & Environment, 164, 220-228.

22. Gan, Y., Liang, C., Huang, G., Malhi, S. S., Brandt, S. A., and Katepa-Mupondwa, F. (2012). Carbon footprint of canola and mustard is a function of the rate of N fertilizer. Int. J. Life Cycle Assess. 17 (1), 58–68. doi:10.1007/s11367-011-0337-z

23. Gonzaga, L. C., Zotelli, L. D. C., de Castro, S. G. Q., de Oliveira, B. G., Bordonal, R. D. O., Cantarella, H., & Carvalho, J. L. N. (2019). Implications of sugarcane straw removal for soil greenhouse gas emissions in São Paulo State, Brazil. BioEnergy Research, 12(4), 843-857.

24. Guzman, J., Al-Kaisi, M., & Parkin, T. (2015). Greenhouse gas emissions dynamics as influenced by corn residue removal in continuous corn system. Soil Science Society of America Journal, 79(2), 612-625.

25. Hurisso, T. T., Norton, U., Norton, J. B., Odhiambo, J., Del Grosso, S. J., Hergert, G. W., & Lyon, D. J. (2016). Dryland Soil Greenhouse Gases and Yield-Scaled Emissions in No-Till and Organic Winter Wheat–Fallow Systems. Soil Science Society of America Journal, 80(1), 178-192.

26. Intergovernmental Panel on Climate Change. Agriculture, Forestry and Other Land Use (AFOLU) (2015). In Climate Change 2014, Mitigation of Climate Change; Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014; Chapter 11.

27. IPCC, 2021. In: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., P´ean, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J.B.R., Maycock, T.K., Yelekçi, W.T.O., Yu, R., Zhou, B. (Eds.), Climate Change 2021: the Physical Science Basis.

28. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge. Jin, V. L., Baker, J. M., Johnson, J. M. F., Karlen, D. L., Lehman, R. M., Osborne, S. L., ... & Wienhold, B. J. (2014). Soil greenhouse gas emissions in response to corn stover removal and tillage management across the US Corn Belt. BioEnergy Research, 7(2), 517-527.

29. Johnson, J. M., Weyers, S. L., Archer, D. W., & Barbour, N. W. (2012). Nitrous oxide, methane emission, and yield-scaled emission from organically and conventionally managed systems. Soil Science Society of America Journal, 76(4), 1347-1357.

30. Li, Y., Feng, H., Wu, W., Jiang, Y., Sun, J., Zhang, Y., Cheng, H., Li, C., Siddique, K.H. and Chen, J., 2022. Decreased greenhouse gas intensity of winter wheat production under plastic film mulching in semi-arid areas. Agricultural Water Management, 274, p.107941.

31. Linquist, B., Groenigen, K. J., Adviento-Borbe, M. A., Pittelkow, C., and Kessel, C. (2012). An agronomic assessment of greenhouse gas emissions from major cereal crops. Glob. Change Biol. 18 (1), 194–209. doi:10.1111/j.1365- 2486.2011.02502.x.

32. Lal, R., Mello, F. F. D. C., Damian, J. M., Cherubin, M. R., & Cerri, C. E. P. (2021). Soil carbon sequestration through adopting sustainable management practices: potential and opportunity for the American countries. Ed. Instituto Interamericano de Cooperación para la Agricultura.

33. Liu, W., Liu, Y., Liu, G., Xie, R., Ming, B., Yang, Y., ... & Hou, P. (2022). Estimation of maize straw production and appropriate straw return rate in China. Agriculture, Ecosystems & Environment, 328, 107865.

34. Mancinelli, R., Marinari, S., Allam, M. and Radicetti, E., 2020. Potential role of fertilizer sources and soil tillage practices to mitigate soil CO2 emissions in mediterranean potato production systems. Sustainability, 12(20), p.8543.

35. Mancinelli, R., Marinari, S., Atait, M., Petroselli, V., Chilosi, G., Jasarevic, M., Catalani, A., Abideen, Z., Mirzaei, M., Allam, M. and Radicetti, E., 2023. Durum Wheat–Potato Crop Rotation, Soil Tillage, and Fertilization Source Affect Soil CO2 Emission and C Storage in the Mediterranean Environment. Land, 12(2), 326.Maw, M.J.; Goyne, K.W.; Fritschi, F.B. (2019). Soil carbon changes following conversion to annual biofuel feedstocks on marginal lands. Agron. J., 111, 4–13.

36. Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., et al. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86. doi:10.1016/j.geoderma.2017.01.002.

37. Mirzaei, M., Gorji Anari, M., Razavy-Toosi, E., Asadi, H., Moghiseh, E., Saronjic, N., & Rodrigo-Comino, J. (2021). Preliminary Effects of Crop Residue Management on Soil Quality and Crop Production under Different Soil Management Regimes in Corn-Wheat Rotation Systems. Agronomy, 11(2), 302.

38. Mirzaei, M., Anari, M. G., Razavy-Toosi, E., Zaman, M., Saronjic, N., Zamir, S. M., ... & Caballero-Calvo, A. (2022). Crop residues in corn-wheat rotation in a semi-arid region increase CO2 efflux under conventional tillage but not in a no-tillage system. Pedobiologia, 93, 150819. https://doi.org/10.1016/j.pedobi.2022.150819

39. Mirzaei, M., Gorji Anari, M., Saronjic, N., Sarkar, S., Kral, I., Gronauer, A., Mohammed, S. and Caballero-Calvo, A., 2023. Environmental impacts of corn silage production: influence of wheat residues under contrasting tillage management types. Environmental Monitoring and Assessment, 195(1), 171. https://doi.org/10.1007/s10661-022-10675-8

40. Mirzaei, M., Gorji Anari, M., Taghizadeh-Toosi, A., Zaman, M., Saronjic, N., Mohammed, S., Szabo, S., Caballero-Calvo, A. (2022). Soil nitrous oxide emissions following crop residues management in corn-wheat rotation under conventional and no-tillage systems. Air, Soil and Water Research, 15, 1-12. https://doi.org/10.1177/11786221221128789

41. Mohammed, S., Mirzaei, M., Pappné Törő, Á., Anari, M. G., Moghiseh, E., Asadi, H., ... & Harsányi, E. (2022). Soil carbon dioxide emissions from maize (Zea mays L.) fields as influenced by tillage management and climate. Irrigation and Drainage, 71(1), 228-240.

42. Mosier, A.R., Halvorson, A.D., Reule, C.A., Liu, X.J.J. (2006). Net global warming potential and greenhouse gas intensity in irrigated cropping systems in northeastern Colorado. Journal of Environmental Quality 35, 1584–1598.

43. Mu, X.; Zhao, Y.; Liu, K.; Ji, B.; Guo, H.; Xue, Z.; Li, C. (2016). Responses of soil properties, root growth and crop yield to tillage and crop residue management in a wheat–maize cropping system on the North China Plain. Eur. J. Agron, 78, 32–43.

44. Nawaz, A., Lal, R., Shrestha, R. K., & Farooq, M. (2017). Mulching Affects Soil Properties and Greenhouse Gas Emissions Under Long-Term No-Till and Plough-Till Systems in Alfisol of Central Ohio. Land Degradation & Development, 28(2), 673-681.

45. O’Neill, M., Lanigan, G. J., Forristal, P. D., & Osborne, B. A. (2021). Greenhouse Gas Emissions and Crop Yields From Winter Oilseed Rape Cropping Systems are Unaffected by Management Practices. Frontiers in Environmental Science, 377.

46. Ogle, S. M., Alsaker, C., BaldockBernoux, J. M., Bernoux, M., Breidt, F. J., McConkey, B., et al. (2019). Climate and Soil Characteristics Determine where No-Till Management Can Store Carbon in Soils and Mitigate Greenhouse Gas Emissions. Sci. Rep. 9, 11665. doi:10.1038/s41598-019-47861-7.

47. Pant, P.K.; Ram, S.; Singh, V. (2017). Yield and soil organic matter dynamics as affected by the long-term use of organic and inorganic fertilizers under rice–wheat cropping system in subtropical mollisols. J. Agric. Res, 6, 399–409.

48. Paustian, K., Lehmann, J., Ogle, S., Reay, D., Robertson, G. P., & Smith, P. (2016). Climate-smart soils. Nature, 532(7597), 49-57.

49. Pooniya, V., Zhiipao, R. R., Biswakarma, N., Kumar, D., Shivay, Y. S., Babu, S., ... & Lama, A. (2022). Conservation agriculture based integrated crop management sustains productivity and economic profitability along with soil properties of the maize-wheat rotation. Scientific reports, 12(1), 1-13.

50. Pratibha, G., Srinivas, I., Rao, K. V., Shanker, A. K., Raju, B. M. K., Choudhary, D. K., ... & Maheswari, M. (2016). Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India. Atmospheric Environment, 145, 239-250.

51. Radicetti, E., Campiglia, E., Langeroodi, A.S., Zsembeli, J., Mendler-Drienyovszki, N. and Mancinelli, R., 2020. Soil carbon dioxide emissions in eggplants based on cover crop residue management. Nutrient Cycling in Agroecosystems, 118, 39-55.

52. Radicetti, E., Osipitan, O.A., Langeroodi, A.R.S., Marinari, S. and Mancinelli, R., 2019. CO2 flux and C balance due to the replacement of bare soil with agro-ecological service crops in Mediterranean environment. Agriculture, 9(4), 71.

53. Seiz, P., Guzman-Bustamante, I., Schulz, R., Müller, T., & Ruser, R. (2019). Effect of crop residue removal and straw addition on nitrous oxide emissions from a horticulturally used soil in South Germany. Soil Science Society of America Journal, 83(5), 1399-1409.

54. Six, J.; Ogle, S.M.; Conant, R.T.; Mosier, A.R.; Paustian, K. (2004). The potential to mitigate global warming with no-tillage management is only realized when practised in the long term. Glob. Chang. Biol, 10, 155–160.

55. Tabari, H., & Talaee, P. H. (2011). Analysis of trends in temperature data in arid and semi-arid regions of Iran. Global and Planetary Change, 79(1-2), 1-10.

56. Taghizadeh-Toosi, A., Janz, B., Labouriau, R., Olesen, J. E., Butterbach-Bahl, K., & Petersen, S. O. (2021). Nitrous oxide emissions from red clover and winter wheat residues depend on interacting effects of distribution, soil N availability and moisture level. Plant and Soil, 1-18.

57. Tenelli, S., Bordonal, R. O., Cherubin, M. R., Cerri, C. E. P., & Carvalho, J. L. N. (2021). Multilocation changes in soil carbon stocks from sugarcane straw removal for bioenergy production in Brazil. GCB Bioenergy, 13(7), 1099-1111.

58. Trumbore, S. (2000). Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. Ecol. Appl. 10 (2), 399–411.

59. Van Groenigen, J. W., Velthof, G. L., Oenema, O., Van Groenigen, K. J., Van Kessel, C., (2010). Towards an agronomic assessment of N2O emissions: a case study for arable crops, European Journal of Soil Science, 61, 903–913.

60. Van Kessel, C.; Venterea, R.; Six, J.; Adviento-Borbe, M.A.; Linquist, B.; Van Groenigen, K.J. (2013). Climate, duration, and N placement determine N2O emissions in reduced tillage systems: A meta-analysis. Glob. Chang. Biol., 19, 33–44.

61. Vasconcelos, A. L. S., Cherubin, M. R., Feigl, B. J., Cerri, C. E., Gmach, M. R., & Siqueira-Neto, M. (2018). Greenhouse gas emission responses to sugarcane straw removal. Biomass and Bioenergy, 113, 15-21.

62. Xia, L.; Lam, S.K.; Chen, D.; Wang, J.; Tang, Q.; Yan, X. (2017). Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis. Glob. Chang. Biol., 23, 1917–1925.

63. Yao, Z., Zheng, X., Wang, R., Xie, B., Butterbach-Bahl, K., & Zhu, J. (2013). Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmospheric Environment, 79, 641-649.

64. Zhang, L., Zheng, J., Chen, L., Shen, M., Zhang, X., Zhang, M., ... & Zhang, W. (2015). Integrative effects of soil tillage and straw management on crop yields and greenhouse gas emissions in a rice–wheat cropping system. European Journal of Agronomy, 63, 47-54.

65. Zhang, Z. S., Cao, C. G., Guo, L. J., & Li, C. F. (2014). The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from No-Tillage paddy fields. The Scientific World Journal, 2014.

66. Zhao, X.; Liu, S.; Pu, C.; Zhang, X.; Xue, J.; Zhang, R.; Wang, Y.; Lal, R.; Zhang, H.; Chen, F. (2016). Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Glob. Chang. Biol., 22, 1372–1384.


Review

For citations:


Mirzaei M., Anari M.G., Cherubin M.R., Saronjic N., Mousavi S.M., Rooien A., Zaman M., Caballero-Calvo A. Crop Residues Stimulate Yield-Scaled Greenhouse Gas Emissions In Maize-Wheat Cropping Rotation In A Semi-Arid Climate. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(4):125-132. https://doi.org/10.24057/2071-9388-2023-2629

Views: 887


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)