Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Multiyear variations of soil moisture availability in the East European Plain

https://doi.org/10.24057/2071-9388-2023-2811

Abstract

This study aims to examine the impact of climate change on the water storage across the East European Plain, utilizing archived digital materials from several remote sensing satellites, including the Terra/Aqua (MODIS), the Global Precipitation Climatology Project, GRACE, and GRACE FO satellites, as well as data from digital maps of Selyaninov hydrothermal coefficients. The spatial resolution of the analyzed data ranged from 1x1 km to 250x250 km. Aiming to enhance the spatial resolution of Selyaninov coefficient maps, a new version of the Selyaninov hydrothermal coefficient was suggested, leveraging satellite remote sensing data. Both visual and computer analyses of these materials reveal a consistent reduction in water storage in the southern regions of the East European Plain, accompanied by a slight increase in the Novgorod Oblast. This information suggests that the non-chernozem region of the East European Plain will play a crucial role in supplying agricultural products to the population in the next decades. The observed stable water storage in the northern part of the East European Plain, encompassing the Komi Republic and the Novgorod Oblast, hints at the potential of increased agricultural production in these areas. However, achieving sustainable growth in agricultural production in these regions necessitates a focused investment policy.

About the Authors

V. I. Gornyy
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation


O. V. Balun
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation


A. V. Kiselev
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation


S. G. Kritsuk
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation


I. Sh. Latypov
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation


A. A. Tronin
St. Petersburg Federal Research Center of the Russian Academy of Sciences
Russian Federation


References

1. Afonin A.N., Li Yu.S., Lipiyainen K.L., Tsepelev V.Yu. (2006). Hydrothermal coefficient of Selyaninov (HTC) for growing season (Gidrotermicheskii koeffitsient Selyaninova (GTK) za vegetatsionnyi period, V V: Afonin A.N., Grin S.L., Dzyubenko N.I., Frolov A.N. (red.) Agroekologicheskii atlas Rossii i sopredel’nykh stran: ekonomicheski znachimye rasteniya, ikh vrediteli, bolezni i sornye (In Russian). (Internet-version 2.0).

2. Cesanelli, A., Guarracino, L. (2011). Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeol. J., 19, 629–639, DOI:10.1007/s10040-011-0708-3.

3. Cherenkova, Elena & Zolotokrylin, Alexander. (2016). On the comparability of some quantitative drought indexes // Fundamental and applied climatology, 2, 79-94. DOI:10.21513/2410-8758-2016-2-79-94.

4. Gulyanov Yu.A. (2022). Influence of climatic changes on the dynamics of winter wheat grain production in the Orenburg region. Perm Agrarian Bulletin, 3 (39), 20-31. DOI: 10.47737/2307-2873_2022_39_20 (in Russian).

5. Huffman, G.J., Behrangi A., Bolvin D.T., Nelkin E.J. (2022). GPCP Version 3.2 Daily Precipitation Data Set, Edited by Huffman, G.J., A. Behrangi, D.T. Bolvin, E.J. Nelkin, Greenbelt, Maryland, USA, Goddard Earth Sciences Data and Infor-mation Services Center (GES DISC), 10.5067/MEASURES/GPCP/DATA305

6. Javadinejad S., Dara R., Jafary F. (2021). Analysis and Prioritization the Effective Factors on Increasing Farmers Resilience Under Climate Change and Drought. Agricultural Research, 10, 497-513. DOI:10.1007/s40003-020-00516-w

7. Kiselev A. V., Muratova N.R., Gornyi V.I., Tronin A.A. (2015). Svyaz’ zapasov produk-tivnoi vlagi v pochve s polem sily tyazhesti Zemli (podannym s»emok sputnikami GRACE) (Relation-ship of productive moisture reserves in the soil with the Earth’s gravity field (according to GRACE satellite survey data)) Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 12(6), 7–16. http://d33.infospace.ru/d33_conf/sb2015t6/7-16.pdf (in Rusian).

8. Kiselev A.V., Gornyy V.I., Kritsuk S.G., Tronin A.A. (2016). Indikatsiya opasnykh pri-rodnykh yavlenii variatsiyami gravitatsionnogo polya Zemli (po dannym sput-nikovykh s»emok sistemoi GRACE) (Indication of hazardous natural phenomena by variations of the Earth’s gravitational field (according to satellite imagery by the GRACE system)), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 13(6), 13–28. (in Russian).

9. Longuevergne L., Wilson C. R., Scanlon B. R., and Crétaux J. F. (2013). GRACE water storage estimates for the Middle East and other regions with significant reservoir and lake storage. Hydrol. Earth Syst. Sci., 17, 4817–4830, DOI:10.5194/hess-17-4817-2013

10. Pat J.-F. Yeh, Swenson S. C., Famiglietti J. S., and Rodell M. (2006). Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resources Research, 42, W12203, DOI:10.1029/2006WR005374.

11. Selyaninov, G.T. (1928). About climate agricultural estimation. Proceedings on Agricultural Meteorology, 20, 165–177.

12. Strassberg G., Scanlon B. R., and Rodell M. (2007). Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measure-ments from the High Plains Aquifer (USA). Geophysical Research Letter, 34, L14402, DOI:10.1029/2007GL030139.

13. Sun, A. Y. (2013), Predicting groundwater level changes using GRACE data, Water Resour. Res., 49, 5900–5912, DOI:10.1002/wrcr.2042111.

14. Swenson, S. C. and Wahr J. (2006). Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett., 33, L08402, DOI:10.1029/2005GL025285.

15. Tretii otsenochnyi doklad ob izmenenii klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii, Obshchee rezyume. (2022). (Thirdassessment report on climate change and its conse-quences on the territory of the Russian Federation. General summary) (in Russian), Sankt-Peterburg: naukoemkie tekhnologii, 124p.

16. Velicogna I, Kimball J. S. and Kim Y. (2015). Impact of changes in GRACE derived terrestrial water storage on vegetation growth in Eurasia. Environ. Res. Lett., 10, 124024. DOI:10.1088/1748-9326/10/12/124024.

17. World Meteorological Organization (WMO) and Global Water Partnership (GWP). (2016). Handbook of Drought Indicators and Indices (M. Svoboda and B.A. Fuchs). Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2. Geneva, 45.


Review

For citations:


Gornyy V.I., Balun O.V., Kiselev A.V., Kritsuk S.G., Latypov I.Sh., Tronin A.A. Multiyear variations of soil moisture availability in the East European Plain. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2023;16(4):120-124. https://doi.org/10.24057/2071-9388-2023-2811

Views: 561


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)