Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

WATER AND HYGIENE IN THE KHARAA RIVER BASIN, MONGOLIA: CURRENT KNOWLEDGE AND RESEARCH NEEDS

https://doi.org/10.24057/2071-9388-2017-10-3-44-53

Full Text:

Abstract

The Kharaa River Basin has some of the highest densities of population, agricultural and industrial activities in Mongolia. This puts the naturally limited water resources under pressure in both a quantitative and qualitative perspective. Besides mining, key sources of surface water contamination include large numbers of livestock in riverine floodplains and the discharge of untreated or poorly treated waste waters, both into rivers and by soil infiltration. Since both shallow groundwater and river water are used by people and for livestock, there are at least theoretical risks related to the transmission of water-borne pathogens. Only a very limited number of studies on water and hygiene have so far been conducted in Mongolia, all indicating (potential) risks to water users. However, a lack of current and reliable water microbiology data leads to the need of systematic screening of water hygiene in order to derive conclusions for public health and drinking water management at the local and regional scale.

About the Authors

D. Karthe
Department Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research; German-Mongolian Institute for Resources and Technology
Mongolia

UFZ, Magdeburg;

Associate Professor for Environmental Engineering,

Nalaikh



K. Westpha
Department Aquatic Ecosystem Analysis and Management, Helmholtz Centre for Environmental Research
Germany
UFZ, Magdeburg


References

1. Anthonj, C., Beskow, S., Dornelles, F. et al. (2014). Water in Urban Regions: Building Future Knowledge to Integrate Land Use, Ecosystem Services and Human Health. Halle/Saale, Rio de Janeiro, Berlin: German National Academy of Sciences Leopoldina, Brazilian Academy of Sciences, German Young Academy, 32 p.

2. APHA, AWWA, AEF - American Public Health Association, American Water Works Association and Water Environment Federation (1998). Standard Methods for the Examination of Water and Waste Water, 20th ed. Washington D.C.

3. Batram, J. and Padley, S. (1996). Microbiological Monitoring of Freshwater. In: Bartram, J., Ballance, R. (Eds). Water Quality Monitoring - A Practical Guide to the Design and Implementation of Freshwater Quality Studies and Monitoring Programmes, pp. 241-269. London, UK: E&FB Spon on behalf of UNEP and WHO.

4. Castell-Exner, C. (2001). Das Multi-Barrieren-System: Basis für eine sichere und nachhaltige Trinkwasserversorgung. energie|wasser-praxis 10/2001, pp. 24-29.

5. Conelly, J.T. and Baeumner, A.J. (2012). Biosensors for the detection of waterborne pathogens. Annals of Bionanalytical Chemistry Vol. 402(1), pp. 117–127. doi:10.1007/s00216-011-5407-3

6. Ebright, J., Altantsetseg, T. and Oyungerel, R. (2003). Emerging Infectious Diseases in Mongolia. Emerging Infectious Diseases, Vol. 9(12), pp.1509-1515.

7. Foggin, P. , Farkas, O., Shiirev-Adiya, S. and Chinbat, B. (1997). Health Status and Risk Factors of Seminomadic Pastoralists in Mongolia: A Geographical Approach. Social Science and Medicine, Vol. 44(11), pp. 1623-1647. DOI:10.1016/S0277-9536(96)00273-0

8. Gibson, K. , Schwab, K., Spencer, S. et al. (2012). Measuring and mitigating inhibition during quantitative real time PCR analysis of viral nucleic acid extracts from large-volume environmental water samples. Water Research, Vol. 46(13), pp. 4281–4291. DOI: 10.1016/j.watres.2012.04.030

9. Grabow, W., Taylor, M. and de Villiers, J. (2001). New methods for the detection of viruses: call for review of drinking water quality guidelines. Water Science and Technology, Vol. 43(12), pp.1–8.

10. Hakenberg, S., Hügle, M., Meyer, P., Behrmann, O. et al. (2014). Fenton fragmentation for faster electrophoretic on chip purification of amplifiable genomic DNA. Biosensors and Bioelectronics, Vol. 67, pp. 49-52. DOI:10.1016/j.bios.2014.06.003

11. Hofmann, J. (2008). Bericht über die Untersuchungen von Grundwasser und Boden auf Schwermetalle und Cyanid in Khongor Sum. DOI: 10.13140/2.1.4306.5928

12. Hofmann, J., Hürdler, J., Ibisch, R. et al. (2011). Analysis of Recent Nutrient Emission Pathways, Resulting Surface Water Quality and Ecological Impacts under Extreme Continental Climate: The Kharaa River Basin (Mongolia). International Review of Hydrobiology, Vol. 96 (5), pp. 484-519. DOI:10.1002/iroh.201111294

13. Hofmann, J., Venohr, M., Behrendt, H. et al. (2010). Integrated water resources management in central Asia: nutrient and heavy metal emissions and their relevance for the Kharaa River Basin, Mongolia. Water Science and Technology, Vol. 62(2), pp. 353-363. DOI: 10.2166/wst.2010.262

14. Hofmann, J., Watson, V., Scharaw, B. (2015). Groundwater quality under stress: contaminants in the Kharaa River basin (Mongolia). Environmental Earth Sciences, Vol. 73(2), pp. 629-648. DOI: 10.1007/s12665-014-3148-2

15. Karthe, D., Heldt, S., Houdret, A. et al. (2015a). IWRM in a country under rapid transition: lessons learnt from the Kharaa River Basin, Mongolia. Environmental Earth Sciences, Vol. 73(2), pp. 681-695. DOI:10.1007/s12665-014-3435-y

16. Karthe, D., Heldt, S., Rost, G. et al. (2016a). Modular Concept for Municipal Water Management in the Kharaa River Basin, Mongolia. In: Borchardt D, Bogardi J, Ibisch R (Ed). Integrated Water Resources Management: Concept, Research and Implementation, pp. 649-681. Heidelberg, Germany & New York, USA: Springer.

17. Karthe, D., Hofmann, J., Ibisch, R. et al. (2015b). Science-Based IWRM Implementation in a Data-Scarce Central Asian Region: Experiences from a Research and Development Project in the Kharaa River Basin, Mongolia. Water , Vol. 7(7), pp. 3486-3514. DOI:10.3390/w7073486

18. Karthe, D., Lin, P. and Westphal, K. (2016b). Spatial pattern of surface water hygiene at the Holtemme: Investigations in a small catchment with a strong landuse and pollution gradient. In: Chifflard, P., Heller, K., Karthe, D. (Ed). Beiträge zum 47. Jahrestreffen des Arbeitskreises Hydrologie vom 19.-21. November 2015 in Dresden. Augsburg: Geographica Augustana.

19. Karthe, D., Sigel, K., Scharaw, B. et al. (2012). Towards an integrated concept for monitoring and improvements in water supply, sanitation and hygiene (WASH) in urban Mongolia. Water & Risk, Vol. 20, pp. 1-5.

20. Kunze, A., Pei, L., Elsaesser, D. et al. (2015). High performance concentration method for viruses in drinking water. Journal of Virological Methods, Vol. 222, pp. 132–137. DOI:10.1016/j.jviromet.2015.06.007

21. Langer, M., Wolf, C., Sorge, H. et al. (2014). Forschung für die Wasserinfrastrukturen von morgen. Energie|wasser-praxis 10/2014, pp. 72-75.

22. Menzel, L., Hofmann, J. and Ibisch, R. (2011). Untersuchung von Wasser- und Stoffflüssen als Grundlage für ein Integriertes Wasserressourcen – Management im Kharaa-Einzugsgebiet (Mongolei). Hydrologie und Wasserbewirtschaftung, Vol. 55(2), pp. 88-103.

23. Mocellin, J. and Foggin, P. (2008). Health Status and geographic mobility among seminomad pastoralists in Mongolia. Health & Place, Vol. 14(2), pp. 228-242. DOI:10.1016/j.healthplace.2007.06.005

24. MoMo Consortium (2009). Integrated Water Resources Management for Central Asia: ModelRegion Mongolia (MoMo). Case Study in the Kharaa River Basin. Final Project Report.

25. Mun, Y., Ko, I., Janchivdorj, L. et al. (2008). Integrated Water Management Model on the Selenga River Basin – status survey and integration (Phase I). Seoul, South Korea: Korea, Environmental Institute. Project report. National Statistical Office of Mongolia (2017).

26. Nöh, C., Böttger, S. (2013). MOMO Project—Sub-Project ‘‘Waste water disposal for 6 municipalities of the Kharaa River catchment area’’: research report. tilia Umwelt GmbH, Leipzig. Unpublished report.

27. Pfeiffer, M., Batbayar, G., Hofmann, J., Siegfried, K., Karthe, D. and Hahn-Tomer, S. (2015).

28. Investigating arsenic (As) occurrence and sources in ground, surface, waste and drinking water in northern Mongolia. Environmental Earth Sciences, Vol. 73(2), pp. 649-662. DOI: 10.1007/s12665-013-3029-0

29. Pitkänen, T., Paakkari, P., Miettinen, I.T. et al. (2007). Comparison of media for enumeration of coliform bacteria and Escherichia coli in non-disinfected water. Journal of Microbiological Methods, Vol. 68, pp. 522–529. DOI: 10.1016/j.mimet.2006.10.007

30. Ramírez-Castillo, F.Y., Loera-Muro, A., Jacques, M., et al. (2015). Waterborne pathogens: detection methods and challenges. Pathogens Vol. 4(2), pp. 307–334. doi:10.3390/pathogens4020307

31. Reder, K., Flörke, M. and Alcamo, J. (2015). Modelling historical fecal coliform loadings to large European rivers and resulting in-stream concentrations. Environmental Modelling & Software, Vol. 63, pp. 251–263. DOI:10.1016/j.envsoft.2014.10.001

32. Rompré, A., Servais, P., Baudart, J. et al. (2002). Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. Journal of Microbiological Methods,Vol. 49(1), pp. 31-54. DOI: 10.1016/S0167-7012(01)00351-7

33. Scharaw, B. and Westerhoff, T. (2011). A leak detection in drinking water distribution network of Darkhan in framework of the project Integrated Water Resources Management in Central Asia, Model Region Mongolia. In: Гуринович АД (Ed.) (2011). Proceedings of the IWA 1st Central Asian Regional Young and Senior Water Professionals Conference, Almaty/Kazakhstan, pp. 275-282.

34. Schoenen, D. (2002). Role of disinfection in suppressing the spread of pathogens with drinking water: possibilities and limitations. Water Research, Vol. 36(15), pp. 3874–3888. DOI: 10.1016/S0043-1354(02)00076-3

35. Sigel, K., Altantuul, K. and Basandorj, D. (2012). Household needs and demand for improved water supply and sanitation in peri-urban ger areas: The case of Darkhan, Mongolia. Environmental Earth Sciences, Vol. 65(5), pp.1561-1566. DOI: 10.1007/s12665-011-1221-7

36. Sorokovikova, L., Popovskaya, G., Tomberg, I. et al. (2013). The Selenge River Water Quality on the Border with Mongolia at the Beginning of the 21st Century. Russian Meterology and Hydrology, Vol. 38 (2), pp.126-133.

37. Uddin, S., Zifu, L., Gaillard, J. C. et al. (2014). Exposure to WASH-borne hazards: A scoping study on peri-urban Ger areas in Ulaanbaatar, Mongolia. Habitat International, Vol. 44, pp. 403-411. DOI:10.1016/j.habitatint.2014.08.006

38. UNDP (2010). Country Sector Assessments. UNDP GoAL WaSH Programme. Vol. 2: Governance, Advocacy and Leadership for Water, Sanitation and Hygiene. New York, USA.


For citation:


Karthe D., Westpha K. WATER AND HYGIENE IN THE KHARAA RIVER BASIN, MONGOLIA: CURRENT KNOWLEDGE AND RESEARCH NEEDS. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2017;10(3):44-53. https://doi.org/10.24057/2071-9388-2017-10-3-44-53

Views: 355


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)