Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Spatiotemporal Variations of Soil Moisture and Groundwater Level in a South Sumatra Peatland, Indonesia During 2015–2018

https://doi.org/10.24057/2071-9388-2021-137

Abstract

The peat hydrological unit of the Air Sugihan River – Air Saleh River, South Sumatra, Indonesia, experienced extreme fires during the 2015 El Niño event. Restoration of 2.0 Mha degraded peatlands has been conducted since 2016. This study aims to analyze spatiotemporal variations of soil moisture content and groundwater level in this site from 2015 to 2018. The soil moisture was estimated using a multiple regression analysis method based on the Sentinel-1A and the European Center for Medium-Range Weather Forecast dataset. The groundwater level model was calculated by using linear regression between the estimated soil moisture and water level observed from field measurements. A minimum moisture content of ~0.78 m3m-3 and a minimum groundwater depth of ~0.50 m below the peat surface were estimated to cause smoldering combustion. A sharp decline in the water table depth (around 1.53 m) led to a decrease in moisture content in October 2015. This month, peat fires severely burned both cultivation and protected areas having dense drainage canals and near rivers. Although there was an increasing trend in the groundwater level and moisture content in 2016, between 2017 to 2018 the water table declined to a depth of ~0.7 m with a corresponding moisture content of ~0.25 m3m-3. Such decline may have led to a few peat fires which occurred in the dry season of both 2017 and 2018. We recommended that law enforcement efforts should be conducted to raise the mean annual water table to shallower depths than 0.40 m

About the Authors

Mokhamad Y. N. Khakim
Universitas Sriwijaya
Indonesia

Jl. Raya Palembang-Prabumulih Km. 32, 30662, Indralaya



Akhmad A. Bama
Universitas Sriwijaya
Indonesia

Jl. Raya Palembang-Prabumulih Km. 32, 30662, Indralaya



Takeshi Tsuji
Kyushu University; University of Tokyo
Japan

744 Motooka, Nishi-ku, Fukuoka 819-0395

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656



References

1. Asmuß T., Bechtold M. and Tiemeyer B. (2019). On the Potential of Sentinel-1 for High Resolution Monitoring of Water Table Dynamics in Grasslands on Organic Soils. Remote Sensing, 11(14), 1659, DOI: 10.3390/rs11141659.

2. Attema E., Davidson M., Floury N., Levrini G., Rosich B., Rommen B. and Snoeij P. (2008). Sentinel-1 ESA’s new European radar observatory. Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR, 1-4, 2-4.

3. Aukema J. and Wilson S. (2019). THE SAR HANDBOOK: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, A.I. Flores-Anderson, K.E. Herndon, R.B. Thapa & E. Cherrington eds.; First, DOI: 10.25966/nr2c-s697.

4. Baghdadi N., Choker M., Zribi M., El Hajj M., Paloscia S., Verhoest N.E.C., Lievens H., Baup F. and Mattia F. (2016). A new empirical model for radar scattering from bare soil surfaces. Remote Sensing, 8(11), 1-14, DOI: 10.3390/rs8110920.

5. BBSDLP. (2019). Map of Peatland of Sumatra Island, Scale 1:50,000.

6. Chen Y., Qiao S., Zhang G., Xu Y.J., Chen L. and Wu L. (2020). Investigating the potential use of Sentinel-1 data for monitoring wetland water level changes in China’s Momoge National Nature Reserve. PeerJ, 2020(2), 1–24, DOI: 10.7717/peerj.8616.

7. Dabrowska-Zielinska K., Budzynska M., Tomaszewska M., Malinska A., Gatkowska M., Bartold M. and Malek I. (2016). Assessment of carbon flux and soil moisture in wetlands applying Sentinel-1 data. Remote Sensing, 8(9), DOI: 10.3390/rs8090756.

8. Dabrowska-Zielinska K., Musial J., Malinska A., Budzynska M., Gurdak R., Kiryla W., Bartold M. and Grzybowski P. (2018). Soil moisture in the Biebrza Wetlands retrieved from Sentinel-1 imagery. Remote Sensing, 10(12), DOI: 10.3390/rs10121979.

9. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., … Vitart F. (2011). The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the Royal Meteorological Society, 137(656), 553-597, DOI: 10.1002/qj.828.

10. Dohong A. (2019). Restoring Degraded Peatland in Indonesia: the 3R Approach. PARISH F., YAN L.S., ZAINUDDIN M.F. & GIESEN W. (Eds.) RSPO Manual on Best Management Practices (BMPs) for Management and Rehabilitation of Peatlands. 2 Ed. Kuala Lumpur: RSPO., 57, 2016–2017.

11. Dubois P.C., Zyl J. V and Engman T. (1995). Measuring soil moisture with imaging radars. IEEE Transactions on Geoscience and Remote Sensing, 33(4), 915-926, DOI: 10.1155/2015/610307.

12. Evers S., Yule C.M., Padfield R., O’Reilly P. and Varkkey H. (2017). Keep wetlands wet: the myth of sustainable development of tropical peatlands – implications for policies and management. Global Change Biology, 23(2), 534-549, DOI: 10.1111/gcb.13422.

13. Filipponi F. (2019). Sentinel-1 GRD Preprocessing Workflow. Proceedings, 18(1), 11, DOI: 10.3390/ecrs-3-06201.

14. Gangat R., van Deventer H., Naidoo L. and Adam E. (2020). Estimating soil moisture using Sentinel-1 and Sentinel-2 sensors for dryland and palustrine wetland areas. South African Journal of Science, 116(8), 1-9, DOI: 10.17159/sajs.2020/6535.

15. Garlough E.C. and Keyes C.R. (2011). Influences of moisture content, mineral content and bulk density on smouldering combustion of ponderosa pine duff mounds. International Journal of Wildland Fire, 20(4), 589-596, DOI: 10.1071/WF10048.

16. Giesen W. and Sari E.N.N. (2018). Tropical Peatland Restoration Report : the Indonesian case Tropical Peatland Restoration Report : The Indonesian Case Berbak Green Prosperity Partnership/Kemitraan Kesejatheraan Hijau (Kehijau Berbak), Issue March, DOI: 10.13140/RG.2.2.30049.40808.

17. Hooijer A., Page S., Canadell J.G., Silvius M., Kwadijk J., Wösten H. and Jauhiainen J. (2010). Current and future CO 2 emissions from drained peatlands in Southeast Asia. Biogeosciences, 7(5), 1505–1514, DOI: 10.5194/bg-7-1505-2010.

18. Hooijer A, Silvius M., Wosten H. and Page S. (2006). PEAT-CO2, Assessment of CO2 Emissions From Drained Peatland in SE Asia. http://www.wetlands.org/Portals/0/publications/Report/PeatCO2 report.pdf

19. Hooijer Aljosja, Silvius M., Wösten H., Page S., Hooijer A., Silvius M., Wösten H. and Page S. (2006). PEAT-CO2, Assessment of CO2 emissions from drained peatlands in SE Asia. Delft Hydraulics Report Q3943, 36.

20. Hornácek M., Wagner W., Sabel D., Truong H., Snoeij P., Hahmann T., Diedrich E. and Doubkova M. (2012). Potencial for high resolution systematic global surface soil moisture retrieval via change detection using Sentinel-1. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(4), 1303-1311, DOI: 10.1109/JSTARS.2012.2190136.

21. Khakim M.Y.N., Bama A.A., Yustian I., Poerwono P., Tsuji T. and Matsuoka T. (2020). Peatland subsidence and vegetation cover degradation as impacts of the 2015 El niño event revealed by Sentinel-1A SAR data. International Journal of Applied Earth Observation and Geoinformation, 84(August 2019), DOI: 10.1016/j.jag.2019.101953.

22. Kim J.W., Lu Z., Gutenberg L. and Zhu Z. (2017). Characterizing hydrologic changes of the Great Dismal Swamp using SAR/InSAR. Remote Sensing of Environment, 198, 187-202, DOI: 10.1016/j.rse.2017.06.009.

23. Lee J. Sen. (1981). Speckle analysis and smoothing of synthetic aperture radar images. Computer Graphics and Image Processing, 17(1), 24-32, DOI: 10.1016/S0146-664X(81)80005-6.

24. Leng L.Y., Ahmed O.H. and Jalloh M.B. (2019). Brief review on climate change and tropical peatlands. Geoscience Frontiers, 10(2), 373380, DOI: 10.1016/j.gsf.2017.12.018.

25. Li J., Wang S., Gunn G., Joosse P. and Russell H.A.J. (2018). A model for downscaling SMOS soil moisture using Sentinel-1 SAR data. International Journal of Applied Earth Observation and Geoinformation, 72(May), 109-121, DOI: 10.1016/j.jag.2018.07.012.

26. Luscombe D.J., Anderson K., Grand-Clement E., Gatis N., Ashe J., Benaud P., Smith D. and Brazier R.E. (2016). How does drainage alter the hydrology of shallow degraded peatlands across multiple spatial scales? Journal of Hydrology, 541, 1329-1339, DOI: 10.1016/j.jhydrol.2016.08.037.

27. Miettinen J., Wang J., Hooijer A. and Liew S. (2013). Peatland Conversion and Degradation Processes in Insular Southeast Asia: a Case Study in Jambi, Indonesia. Land Degradation & Development, 24(4), 334-341, DOI: 10.1002/ldr.1130.

28. Oh Y., Sarabandi K. and Ulaby F.T. (1992). An empirical model and an inversion technique for radar scattering from bare soil surface. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 370-381.

29. Page S., Hosciło A., Wösten H., Jauhiainen J., Silvius M., Rieley J., Ritzema H., Tansey K., Graham L., Vasander H. and Limin S. (2009). Restoration ecology of lowland tropical peatlands in Southeast Asia: Current knowledge and future research directions. Ecosystems, 12(6), 888–905, DOI: 10.1007/s10021-008-9216-2.

30. Peat Restoration Agency. (2017). Final Report: Data Acquisition and Thematic Mapping in KHG Area of Cawang - Lalang River and KHG of Sugihan - Saleh River.

31. Prat-Guitart N., Rein G., Hadden R.M., Belcher C.M. and Yearsley J.M. (2016). Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions. International Journal of Wildland Fire, 25(4), 456-465, DOI: 10.1071/WF15103.

32. Protection and management of the peat ecosystem, Pub. L.., 71 (2014).

33. Amendment to Government Regulation Number 71 of 2014 concerning peatland ecosystem protection and management, Pub. L. No. 57 (2016).

34. Peat Restoration Agency, Pub. L., 1 (2016).

35. Republic of Indonesia. (2018). Project final report between JICA (Japan International Cooperation Agency) and BRG (Peatland Restoration Agency in Indonesia).

36. Roy P.D., Rivero-Navarrete A., Sánchez-Zavala J.L. and López-Balbiaux N. (2014). Subsurface fire and subsidence at Valle del Potosí (Nuevo León, Mexico): Preliminary observations. Boletin de La Sociedad Geologica Mexicana, 66(3), 553-557, DOI: 10.18268/BSGM2014v66n3a10.

37. Schroeder W., Oliva P., Giglio L. and Csiszar I.A. (2014). The New VIIRS 375m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85-96, DOI: 10.1016/j.rse.2013.12.008.

38. Sodikin E., Munandar M., Setiawan A., Prayitno M.B. and Suwandi S. (2017). Pilot project implementasi paludikultur dan agroforestry lahan APL di Desa Perigi, Pangkalan Lampam, KHG Sungai Sugihan - Saleh Lumpur Ogan Komering Ilir, Sumatera Selatan.

39. Sulaiman A., Sari E.N.N. and Saad A. (2017). Panduan teknis pemantuan tinggi muka air lahan gambut sistem telemetri. The Republic of Indonesia Peat Restoration Agency.

40. Usup A., Hashimoto Y., Takahashi H. and Hayasaka H. (2004). The principal types of vegetation in the. Tropics, 14(1), 1-19. https://www.jstage.jst.go.jp/article/tropics/14/1/14_1_1/_pdf

41. Whittington P.N. and Price J.S. (2006). Advanced Bash-Scripting Guide An in-depth exploration of the art of shell scripting Table of Contents. Hydrological Processes, 20, 3589-3600, DOI: 10.1002/hyp.6376.

42. Wösten J.H.M., Clymans E., Page S.E., Rieley J.O. and Limin S.H. (2008). Peat-water interrelationships in a tropical peatland ecosystem in Southeast Asia. Catena, 73(2), 212-224, DOI: 10.1016/j.catena.2007.07.010.

43. Wösten J.H.M., Van Den Berg J., Van Eijk P., Gevers G.J.M., Giesen W.B.J.T., Hooijer A., Idris A., Leenman P.H., Rais D.S., Siderius C., Silvius M.J., Suryadiputra N. and Wibisono I.T. (2006). Interrelationships between hydrology and ecology in fire degraded tropical peat swamp forests. International Journal of Water Resources Development, 22(1), 157-174, DOI: 10.1080/07900620500405973.

44. Zhang Xianlong, Chan N.W., Pan B., Ge X. and Yang H. (2021). Mapping flood by the object-based method using backscattering coefficient and interference coherence of Sentinel-1 time series. Science of the Total Environment, 794, 148388, DOI: 10.1016/j.scitotenv.2021.148388

45. Zhang Xuefei, Zhang T., Zhou P., Shao Y. and Gao S. (2017). Validation analysis of SMAP and AMSR2 soil moisture products over the United States using ground-based measurements. Remote Sensing, 9(2), DOI: 10.3390/rs9020104.


Review

For citations:


Khakim M.Y., Bama A.A., Tsuji T. Spatiotemporal Variations of Soil Moisture and Groundwater Level in a South Sumatra Peatland, Indonesia During 2015–2018. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(2):58-70. https://doi.org/10.24057/2071-9388-2021-137

Views: 1582


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)