Advanced search

Contribution Analysis Of Permanent And Sporadic Controls Of Co2 Efflux From Chernozems Over Four Seasons

Full Text:


We analyzed four years field observations (2017–2020) of soil CO2 efflux from Chernozems of arable and foreststeppe ecosystems of Kursk region (Russia), which correspond to the period of the maximal current warming. Three wellknown simulation models of different structure and variable sets (DNDC, RothC, T&P) and nonparametric regression analysis were used to estimate annual CO2 emission from soil and contributions of constant and sporadic controls. The applied models satisfactorily predict both the rate of annual soil CO2 emission and its seasonal dynamics on arable Chernozems. However, while RothC is suitable for the whole set of crops considered, DNDC is most suitable for cereals and T&R for bare soils only. A comparison of the contributions of permanent and sporadic factors to soil respiration showed that on an inter-annual scale soil temperature and moisture are less important than yearly crop rotation in Chernozem plowlands, making the latter the most important predictor apart from general land-use type. Although the combination of significant permanent and sporadic factors is able to explain 41% of the soil CO2 emission variance, the leading involvement of spatial controls prevents the construction of quantitative regression models that are able to make forecasts, requiring the use of more sophisticated simulation models (i.e. RothC) in this case. However, the use of the latter does not yet solve the problem of predicting soil CO2 emission and its net balance in forest-covered or steppe areas of Chernozem forest-steppe landscape.

About the Authors

Dmitry V. Karelin
Institute of Geography RAS
Russian Federation

Staromonetny Lane, 29, 119017, Moscow

Olga E. Sukhoveeva
Institute of Geography RAS
Russian Federation

Staromonetny Lane, 29, 119017, Moscow


1. Akbolat D., Evrendilek F., Coskan A., and Ekinci K. (2009). Quantifying soil respiration in response to short-term tillage practices: a case study in southern Turkey. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 59(1), 50-56, DOI: 10.1080/09064710701833202.

2. Anderson M.J., Gorley R.N., and Clarke K.R. (2008). PERMANOVA+ for PRIMER: guide to software and statistical methods. Plymouth: PRIMER-E Ltd.

3. Birch H.F. (1958). The effect of soil drying on humus decomposition and nitrogen. Plant & Soil, 10, 9-31.

4. Bojarszczuk J., KsięŻak J., and Gałązka A. (2017). Soil respiration depending on different agricultural practices before maize sowing. Plant Soil Environment, 63, 435-441, DOI: 10.17221/597/2017-PSE.

5. Boretti A. and Florentine S. (2019). Atmospheric CO2 concentration and other limiting factors in the growth of C3 and C4 plants. Plants, 8(4), 92, DOI: 10.3390/plants8040092.

6. Chen S., Zou J., Hu Z., Chen H., and Lu Y. (2014). Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agricultural and Forest Meteorology, 198-199, 335-346, DOI: 10.1016/j.agrformet.2014.08.020.

7. Cherkassov G.N., Masyutenko N.A., and Masyutenko M.N. (2013). Influence of a crop rotation type, a tillage system and slope exposure on the dynamics of CO2 emission from a typical Chernozem soil. Achievements of Science and Technology of AIC, 6, 34-37 (in Russian with English summary).

8. Chertov O.G. and Komarov A.S. (2013). Theoretical approaches to modelling the dynamics of soil organic matter. Eurasian Soil Science, 46(8), 845-853, DOI: 10.1134/S1064229313080012.

9. Davidson Е. А., Janssens I. A., and Luo Y. (2006). On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Global Change Biology, 12, 154-164.

10. Fiedler S.R., Leinweber P., Jurasinski G., Eckhardt K.-U., and Glatzel S. (2016). Tillage-induced short-term soil organic matter turnover and respiration. SOIL, 2, 475-486, DOI: 10.5194/soil-2-475-2016.

11. Fraser F.C., Corstanje R., Deeks L.K., Harris J.A., Pawlett M., Todman L.C., Whitmore A.P., and Ritz K. (2016). On the origin of carbon dioxide released from rewetted soils. Soil Biology and Biochemistry, 101, 1-5, DOI: 10.1016/j.soilbio.2016.06.032.

12. Ghannoum O., Caemmerer S.V., Ziska L.H., and Conroy J.P. (2000). The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment. Plant, Cell and Environment, 23, 931-942.

13. Idso C.D. and Idso K.E. (2000). Forecasting world food supplies: the impact of rising atmospheric CO2 concentration. Technology 7 (suppl), 33-56.

14. IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

15. Jenkinson D.S., Hart P.B.S., Rayner J.H., and Parry L.C. (1987). Modeling the turnover of organic matter in long-term experiments at Rothamsted. INTECOL Bulletin, 15, 1-8.

16. Karelin D., Goryachkin S., Zazovskaya E., Shishkov V., Pochikalov A., Dolgikh A., Sirin A., Suvorov G., Badmaev N., Badmaeva N., Tsybenov Y., Kulikov A., Danilov P., Savinov G., Desyatkin A., Desyatkin R., and Kraev G. (2020а). Greenhouse gas emission from the cold soils of Eurasia in natural settings and under human impact: Controls on spatial variability. Geoderma Regional, 22, 1-18, DOI: 10.1016/j.geodrs.2020.e00290.

17. Karelin D.V., Lyuri D.I., Goryachkin S.V., Lunin V.N., and Kudikov A.V. (2015). Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the Chernozem forest-steppe. Eurasian Soil Science, 48(11), 1229-1241, DOI: 10.1134/S1064229315110095.

18. Karelin D.V., Pochikalov A.V., Zamolodchikov D.G., and Gitarskii M.L. (2014). Factors of spatiotemporal variability of CO2 fluxes from soils of southern taiga spruce forests of Valdai. Contemporary Problems of Ecology, 7(7), 743-752, DOI: 10.1134/S1995425514070063.

19. Karelin D.V., Zamolodchikov D.G., and Isaev A.S. (2017). Unconsidered sporadic sources of carbon dioxide emission from soils in taiga forests. Doklady biological sciences, 475, 165-168, DOI: 10.1134/S0012496617040093.

20. Karelin D.V., Zamolodchikov D.G., Shilkin A.V., Popov S.Yu., Kumanyaev A.S., Lopes de Gerenyu V.O., Tel’nova N.O., and Gitarskiy M.L. (2020b). The effect of tree mortality on CO2 fluxes in an old-growth spruce forest. European Journal of Forest Research, 140 (3), 1-19, DOI: 10.1007/s10342-020-01330-3.

21. Kudeyarov V.N. and Kurganova I.N. (2005). Respiration of Russian soils: database analysis, long-term monitoring, and general estimates. Eurasian Soil Science, 38(9), 983-992.

22. Kudeyarov V.N., Zavarzin G.A., Blagodatsky S.A., Borisov A.V., Voronin P.Yu., Demkin V.A., Demkina T.S., Yevdokimov I.V., Zamolodchikov D.|G., Karelin D.V., Komarov A.S., Kurganova I.N., Laryonova A.A., Lopes de Gerenyi V.O., Utkin A.I., and Chertov O.G. (2007). Pools and fluxes in terrestrial ecosystems of Russia. Moscow: Nauka. (in Russian).

23. Kurganova I.N. and Lopes de Gerenyu V.O. (2015). Contribution of abiotic factors to CO2 emission from soils in the freeze–thaw cycles. Eurasian Soil Science, 48(9), 1009-1015, DOI: 10.1134/S1064229315090082.

24. Kurganova I.N., Lopes de Gerenyu V.O., Khoroshaev D.A., Myakshina T.N., Sapronov D.V., Zhmurin V.A., and Kudeyarov V.N. (2020). Analysis of the long-term dynamics of soil respiration in forest and meadow cenoses of the Prioksko-Terrasny biosphere reserve in the perspective of current climatic trends. Eurasian Soil Science, 53(10), 1220-1236, DOI: 10.1134/S1064229320100117.

25. Kuzyakov Y. (2006). Sources of CO2 efflux from soil and review of partitioning methods. Soil Biology and Biochemistry, 38(3), 425-448, DOI: 10.1016/j.soilbio.2005.08.020.

26. Kuzyakov Y. and Blagodatskaya E. (2015). Microbial hotspots and hot moments in soil: Concept & review. Soil Biology and Biochemistry, 83, 184-199, DOI: 10.1016/j.soilbio.2015.01.025.

27. Leon E., Vargas R., Bullock S., Lopez E., Panosso A.R., and La Scala Jr. N. (2014). Hot spots, hot moments, and spatio-temporal controls on soil CO2 efflux in a water-limited ecosystem. Soil Biology & Biochemistry, 77, 12-21, DOI: 10.1016/j.soilbio.2014.05.029.

28. Leskinen P., Lindner M., Verkerk P.J., Nabuurs G.J., Van Brusselen J., Kulikova E., Hassegawa M. and Lerink B. (eds.). (2020). Russian forests and climate change. What Science Can Tell Us 11. European Forest Institute, DOI: 10.36333/wsctu11.

29. Li C., Frolking S., and Frolking T.A. (1992). A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity. Journal of geophysical research, 97(D9), 9759-9776.

30. Lopes de Gerenyu V.O., Kurganova I.N., and Khoroshaev D.A. (2018). The Effect of Contrasting Moistening Regimes on CO2 Emission from the Gray Forest Soil under a Grass Vegetation and Bare Fallow. Eurasian Soil Science, 51, 1200-1213, DOI: 10.1134/S1064229318100034.

31. Luo Y. and Zhou X. (2006). Soil respiration and the environment. Burlington: Academic Press.

32. Markovskaya G.K., Melnikova N.A., and Nechaeva E.H. (2014). The influence of different ways of the main soil cultivation on its biological activity in spring wheat sowing. Vestnik of Saratov state agrouniversity named after N.I. Vavilov, 2, 22-25. (in Russian with English summary).

33. McGuire A.D., Sitch S., Clein J.S., Dargaville R., Esser G., Foley J., Heimann M., Joos F., Kaplan J., Kicklighter D.W., Meier R.A., Melillo J.M., Moore III B., Prentice I.C., Ramankutty N., Reichenau T., Schloss A., Tian H., Williams L.J., and Wittenberg U. (2001). Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models. Global Biogeochemistry Cycles, 15, 183-206, DOI: 10.1029/2000GB001298.

34. Moyano F.E., Manzoni S., and Chenu C. (2013). Responses of soil heterotrophic respiration to moisture availability: An exploration of processes and models. Soil Biology and Biochemistry, 59, 72-85, DOI: 10.1016/j.soilbio.2013.01.002.

35. Naumov A.V. (2009). Soil respiration: components, ecological functions, geographical regulatiries. Novosibirsk: SO RAS. (In Russian).

36. Ohashi M., Kume T., Yamane S., and Suzuki M. (2007). Hot spots of soil respiration in an Asian tropical rainforest. Geophysical Research Letters, 34(8), L08705, DOI: 10.1029/2007GL029587.

37. Oikawa P.Y., Grantz D.A., Chatterjee A., Eberwein J.E., Allsman L.A., and Jenerette G.D. (2014). Unifying soil respiration pulses, inhibition, and temperature hysteresis through dynamics of labile soil carbon and O2. Journal of Geophysical Research: Biogeosciences, 119(4), 521-536, DOI: 10.1002/2013JG002434.

38. Raich J.W., Potter C.S., and Bhagawati D. (2002). Interannual variability in global soil respiration, 1980-94. Global Change Biology, 8(8), 800-812, DOI: 10.1046/j.1365-2486.2002.00511.x.

39. Reichstein M., Katterer T., Andren O., Ciais P., Schulze E.-D., Cramer W., Papale D., Valentini R. (2005). Temperature sensitivity of decomposition in relation to soil organic matter pools: critique and outlook. Biogeosciences, 2, 317-321, DOI: 10.5194/bg-2-317-2005.

40. Roland M., Vicca S., Bahn M., Ladreiter-Knauss T., Schmitt M., and Janssens I.A. (2015). Importance of nondiffusive transport for soil CO2 efflux in a temperate mountain grassland. Journal of Geophysical Research. Biogeosciences, 120(3), 502-512, DOI: 10.1002/2014JG002788.

41. Sánchez-Cañete E.P., Kowalski A.S., Serrano-Ortiz P., Pérez-Priego O., and Domingo F. (2013). Deep CO2 soil inhalation / exhalation induced by synoptic pressure changes and atmospheric tides in a carbonated semiarid steppe. Biogeosciences, 10, 6591-6600, DOI: 10.5194/bg-10-6591-2013.

42. Smagin A.V. and Karelin D.V. (2021). Effect of wind on soil-atmosphere gas exchange. Eurasian Soil Science, 54(3), 372-380, DOI: 10.1134/S1064229321030133.

43. Stepanov A.L. (2011). Microbial transformation of greenhouse gases in soils. Moscow: GEOS. (In Russian).

44. Stupakov A.G. (2014). Influence of tillage systems on respiration of soil biota of typical Chernozem. Vestnik of Kursk state agricultural academy, 7, 56-59. (In Russian).

45. Sukhoveeva O.E. (2020). Assistance for using the RothC model in Russia: the method of preparing input information. Problems of ecological monitoring and ecosystem modelling, 32(3-4), 133-148, DOI: 10.21513/0207-2564-2020-3-133-148 (In Russian with English summary).

46. Sukhoveeva O.E. and Karelin D.V. (2019). Parametrization of the model DNDC for evaluating components of carbon biogeochemical cycle in the European part of Russia. Vestnik of Saint Petersburg University. Earth Sciences, 64(2), 363-384, DOI: 10.21638/spbu07.2019.211 (in Russian with English summary).

47. Suleau M., Moureaux C., Dufranne D., Buysse P., Bodson B., Destain J.P., Heinesch B., Debacq A. and Aubinet M. (2011). Respiration of three Belgian crops: Partitioning of total ecosystem respiration in its heterotrophic, above- and below-ground autotrophic components. Agricultural and Forest Meteorology, 151(5), 633-643, DOI: 10.1016/j.agrformet.2011.01.012.

48. Takle E.S., Massman W.J., Brandle J.R., Schmidt R.A., Zhou X., Litvina I.V., Garcia R., Doyle G., and Rice C.W. (2004). Influence of highfrequency ambient pressure pumping on carbon dioxide efflux from soil. Agricultural and Forest Meteorology, 124, 193-206, DOI: 10.1016/j.agrformet.2004.01.014

49. The second Roshydromet assessment report on climate change and its consequences in the Russian Federation. (2014). Moscow: Roshydromet.

50. Tian H., Lu C., Ciais P., Michalak A.M., Canadell J.G., Saikawa E., Huntzinger D.N., Gurney K.R., Sitch S., Zhang B., Yang J., Bousquet P., Bruhwiler L., Chen G., Dlugokencky E., Friedlingstein P., Melillo J., Pan S., Poulter B., Prinn R., Saunois M., Schwalm C.R., and Wofsy S.C. (2016). The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature, 531, 225-228, DOI: 10.1038/nature16946.

51. Unger S., Máguas C., Pereira J.S., David T.S., and Werner C. (2010). The influence of precipitation pulses on soil respiration – Assessing the «Birch effect» by stable carbon isotopes. Soil Biology and Biochemistry, 42(10), 1800-1810, DOI: 10.1016/j.soilbio.2010.06.019.

52. Zadorozhniy А.N., Semenov М.V., Khodzhaeva А.К., and Semenov V.М. (2010). Production, consumption, and emission of greenhouse gases in the soil. Agrochemistry, 10, 75-92. (In Russian with English summary).

53. Zavarzin G.A. and Kudeyarov V.N. (2006). Soil as the key source of carbonic acid and reservoir of organic carbon on the territory of Russia. Herald of the Russian Academy of Sciences, 76(1), 12-26, DOI: 10.1134/S1019331606010035.

54. Zhang Y., Li C., Zhou X., and Moore B. (2002). A simulation model linking crop growth and soil biogeochemistry for sustainable agriculture. Ecological Modelling, 151(1), 75-108, DOI: 10.1016/S0304-3800(01)00527-0.

55. Zolotokrylin A.N., Vinogradova V.V., and Cherenkova E.A. (2007). Drought dynamics over European Russia in global warming situation. Problems of ecological monitoring and ecosystem modelling, 21, 160-183. (In Russian with English summary).


For citations:

Karelin D.V., Sukhoveeva O.E. Contribution Analysis Of Permanent And Sporadic Controls Of Co2 Efflux From Chernozems Over Four Seasons. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2022;15(1):35-45.

Views: 376

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)