Advanced search

Thresholds of Metal and Metalloid Toxicity In Field-Collected Anthropogenically Contaminated Soils: A Review

Full Text:


Ecotoxicological studies of soil metal toxicity conventionally rely on the use of uncontaminated soils gradually enriched with metals in the form of soluble salts. Although this method is very useful in many ways, it is continually complicated by the difficulty of extrapolating laboratory results to actual field-collected soils exposed to decades of contamination. Although many studies emphasize the importance of using field-contaminated soils for toxicity bioassays, the number of studies actually conducted based on this premise is relatively small. This review provides an in-depth recompilation of data on metal toxicity thresholds in field-contaminated soils. We have summarized the EC10, EC25, and EC50 values for metals, i.e., values of metal concentrations that reduce the response of specific organisms by 10%, 25%, and 50% of the value in uncontaminated soils. In our summary, most studies show that total metal content can predict organismal responses as well as bioavailable fractions. These results are consistent with the intensity/capacity/quantity concept proposed for plant nutrient uptake. In addition, microorganisms are thought to be more sensitive to metals than plants and invertebrates. However, our analysis shows that there is no statistically significant difference between the sensitivity of microorganisms and other organisms (plants and invertebrates) to any metal or metal pool. We expect that this information will be useful for environmental assessment and soil quality decisions. Finally, we encourage future studies to analyze dose-effect relationships in native field-collected soils with varying degrees of metal contamination from long-term anthropogenic pollution.

About the Authors

Javier Santa-Cruz
Escuela de Ciencias Agricolas y Veterinarias, Universidad Viña del Mar

Viña del Mar

Patricia Peñaloza
Escuela de Agronomia, Pontificia Universidad Catolica de Valparaiso


Maria V. Korneykova
Peoples Friendship University of Russia (RUDN University)
Russian Federation

Department of Landscape Design and Sustainable Ecosystems


Alexander Neaman
Instituto de Ingenieria Agraria y Suelos, Universidad Austral de Chile

Facultad de Ciencias Agrarias y Alimentarias



1. Al-Hiyaly S.A.K., McNeilly T., and Bradshaw A.D. (1990). The effect of zinc contamination from electricity pylons. Contrasting patterns of evolution in five grass species. New Phytologist 114, 183-190.

2. Aponte H., Mondaca P, Santander C., Meier S., Paolini J., Buttler B., Rojas C., Diez M.C., and Cornejo P (2021). Enzyme activities and microbial functional diversity in metal (loid) contaminated soils near to a copper smelter. Science of The Total Environment, 146423, DOI: 10.1016/j.scitotenv.2021.146423.

3. Arthur E., Moldrup P, Holmstrup M., Schjonning P, Winding A., Mayer P, and de Jonge L.W. (2012). Soil microbial and physical properties and their relations along a steep copper gradient. Agriculture Ecosystems & Environment, 159, 9-18, DOI: 10.1016/j.agee.2012.06.021.

4. Baath E., Arnebrant K., and Nordgren A. (1991). Microbial biomass and ATP in smelter-polluted forest humus. Bulletin of Environmental Contamination and Toxicology 47, 278-282, DOI: 10.1007/bf01688652.

5. Beyer W.N., Green C.E., Beyer M., and Chaney R.L. (2013). Phytotoxicity of zinc and manganese to seedlings grown in soil contaminated by zinc smelting. Environmental Pollution, 179, 167-176, DOI: 10.1016/j.envpol.2013.04.013.

6. Beyer W.N., Krafft C., Klassen S., Green C.E., and Chaney R.L. (2011). Relating injury to the forest ecosystem near Palmerton, PA, to zinc contamination from smelting. Archives of Environmental Contamination and Toxicology, 61,376-388, DOI: 10.1007/s00244-010-9640-0.

7. Broos K., Beyens H., and Smolders E. (2005). Survival of rhizobia in soil is sensitive to elevated zinc in the absence of the host plant. Soil Biology & Biochemistry, 37, 573-579, DOI: 10.1016/j.soilbio.2004.08.018.

8. Broos K., Uyttebroek M., Mertens J., and Smolders E. (2004). A survey of symbiotic nitrogen fixation by white clover grown on metal contaminated soils. Soil Biology & Biochemistry, 36, 633-640, DOI: 10.1016/j.soilbio.2003.11.007.

9. Bustos V., Mondaca P, Sauve S., Gaete H., Celis-Diez J.L., and Neaman A. (2015). Thresholds of arsenic toxicity to Eisenia fetida in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and Environmental Safety, 122, 448-454, DOI: 10.1016/j.ecoenv.2015.09.009.

10. Checkai R., Van Genderen E., Sousa J.P, Stephenson G., and Smolders E. (2014). Deriving site-specific clean-up criteria to protect ecological receptors (plants and soil invertebrates) exposed to metal or metalloid soil contaminants via the direct contact exposure pathway. Integrated Environmental Assessment and Management, 10, 346-357, DOI: 10.1002/ieam.1528.

11. Cioccio S., Gopalapillai Y., Dan T., and Hale B. (2017). Effect of liming on nickel bioavailability and toxicity to oat and soybean grown in field soils containing aged emissions from a nickel refinery. Environmental Toxicology and Chemistry, 36, 1110-1119, DOI: 10.1002/etc.3634.

12. Dan T., Hale B., Johnson D., Conard B., Stiebel B., and Veska E. (2008). Toxicity thresholds for oat (Avena sativa L.) grown in Ni-impacted agricultural soils near Port Colborne, Ontario, Canada. Canadian Journal of Soil Science, 88, 389-398, DOI: 10.4141/CJSS07070

13. De Knecht J.A., Hooftman R.N., Kaag N.H.B.M., van der Hoeven N., and Henzen L. (1998). Effects of zinc on the germination and growth of red clover, Trifolium pratense, under field and laboratory conditions, In: Posthuma L., Van Gestel C. A. M., Smit CE B. D. and Vonk J. W., (Eds.), Validation of toxicity data and risk limits for soils. Report n°607505004. Bilthoven, The Netherlands: National Institute of Public Health and The Environment, 67-77.

14. Delgadillo V., Verdejo J., Mondaca P, Verdugo G., Gaete H., Hodson M.E., and Neaman A. (2017). Proposed modification to avoidance test with Eisenia fetida to assess metal toxicity in agricultural soils affected by mining activities. Ecotoxicology and Environmental Safety 140, 230-234, DOI: 10.1016/j.ecoenv.2017.02.038.

15. Ford R.G., Bertsch PM., and Farley K.J. (1997). Changes in transition and heavy metal partitioning during hydrous iron oxide aging. Environmental Science & Technology, 31,2028-2033, DOI: 10.1021/es960824+.

16. Giller K.E., Witter E., and McGrath S.P (1999). Assessing risks of heavy metal toxicity in agricultural soils: Do microbes matter? Human and Ecological Risk Assessment, 5, 683-689, DOI: 10.1080/10807039.1999.9657732.

17. Gopalapillai Y., Dan T., and Hale B. (2019). Ni bioavailability in oat (Avenasativa) grown in naturally aged, Ni refinery-impacted agricultural soils. Human and Ecological Risk Assessment, 25, 1422-1437, DOI: 10.1080/10807039.2018.1464382.

18. Hamels F., Maleve J., Sonnet P, Kleja D.B., and Smolders E. (2014). Phytotoxicity of trace metals in spiked and field-contaminated soils: Linking soil-extractable metals with toxicity. Environmental Toxicology and Chemistry, 33, 2479-2487, DOI: 10.1002/etc.2693.

19. Hooper M., and Anderson M. (2008). Soil Toxicity and Bioassessment Test Methods for Ecological Risk Assessment: Toxicity Test Methods for Soil Microorganisms, Terrestrial Plants, Terrestrial Invertebrates and Terrestrial Vertebrates. Office of Environmental Health Hazard Assessment, California Environmental Protection Agency.

20. Hui N., Selonen S., Hanzel J., Tuomela M., Rainio A., Kontio H., Hakala K., Lankinen P, Steffen K., Fingerroos T., Strommer R., Setala H., Hatakka A., and Romantschuk M. (2009). Influence of lead on organisms within the detritus food web of a contaminated pine forest soil. Boreal Environment Research 14, 70-85.

21. Jakobs-Schonwandt D., Mathies H., Abraham W.R., Pritzkow W., Stephan I., and Noll M. (2010). Biodegradation of a Biocide (Cu-N-Cyclohexyldiazenium Dioxide) Component of a Wood Preservative by a Defined Soil Bacterial Community. Applied and Environmental Microbiology, 76, 8076-8083, DOI: 10.1128/aem.01092-10.

22. Kolbas A., Kolbas N., Marchand L., Herzig R., and Mench M. (2018). Morphological and functional responses of a metal-tolerant sunflower mutant line to a copper-contaminated soil series. Environmental Science and Pollution Research, 25, 16686-16701, DOI: 10.1007/s11356-018-1837-1.

23. Kolbas A., Marchand L., Herzig R., Nehnevajova E., and Mench M. (2014). Phenotypic seedling responses of a metal-tolerant mutant line of sunflower growing on a Cu-contaminated soil series: potential uses for biomonitoring of Cu exposure and phytoremediation. Plant and Soil, 376, 377-397, DOI: 10.1007/s11104-013-1974-8.

24. Konecny L., Ettler V., Kristiansen S., Barros Amorim M.J., Kribek B., Mihaljevic M., Sebek O., Nyambe I., and Scott-Fordsmand J. (2014). Response of Enchytraeus crypticus worms to high metal levels in tropical soils polluted by copper smelting. Journal of Geochemical Exploration, 144, 427-432, DOI: 10.1016/j.gexplo.2013.10.004.

25. Korkina I.N., and Vorobeichik E.L. (2018). Humus Index as an indicator of the topsoil response to the impacts of industrial pollution. Applied Soil Ecology, 123, 455-463, DOI: 10.1016/j.apsoil.2017.09.025.

26. Kukier U., and Chaney R.L. (2004). In situ remediation of nickel phytotoxicity for different plant species. Journal of Plant Nutrition, 27, 465-495, DOI: 10.1081/pln-120028874.

27. Lessard I., Sauve S., and Deschenes L. (2014a). Enzymatic functional stability of Zn-contaminated field-collected soils: An ecotoxicological perspective. Science of the Total Environment, 484, 1-9, DOI: 10.1016/j.scitotenv.2014.03.024.

28. Lessard I., Sauve S., and Deschenes L. (2014b). Toxicity response of a new enzyme-based functional diversity methodology for Zn-contaminated field-collected soils. Soil Biology & Biochemistry, 71,87-94, DOI: 10.1016/j.soilbio.2014.01.002.

29. Lillo-Robles F., Tapia-Gatica J., Diaz-Siefer P, Moya H., Celis-Diez J.L., Santa Cruz J., Ginocchio R., Sauve S., Brykov V.A., and Neaman A. (2020). Which soil Cu pool governs phytotoxicity in field-collected soils contaminated by copper smelting activities in central Chile? Chemosphere, 242, 125176, DOI: 10.1016/j.chemosphere.2019.125176.

30. Liu M.P, Xu J., Krogh PH., Song J., Wu L.H., Luo Y.M., and Ke X. (2018). Assessment of toxicity of heavy metal-contaminated soils toward Collembola in the paddy fields supported by laboratory tests. Environmental Science and Pollution Research, 25, 16969-16978, DOI: 10.1007/s11356-018-1864-y.

31. Luo W., Verweij R.A., and van Gestel C.A.M. (2014a). Contribution of soil properties of shooting fields to lead biovailability and toxicity to Enchytraeus crypticus. Soil Biology & Biochemistry, 76, 235-241, DOI: 10.1016/j.soilbio.2014.05.023.

32. Luo W., Verweij R.A., and van Gestel C.A.M. (2014b). Determining the bioavailability and toxicity of lead contamination to earthworms requires using a combination ofphysicochemical and biological methods. Environmental Pollution, 185, 1-9, DOI: 10.1016/j.envpol.2013.10.017.

33. Luo W., Verweij R.A., and van Gestel C.A.M. (2015). Toxicity of Pb contaminated soils to the oribatid mite Platynothruspeltifer. Ecotoxicology, 24, 985-990, DOI: 10.1007/s10646-015-1439-3.

34. Maraldo K., Christensen B., Strandberg B., and Holmstrup M. (2006). Effects of copper on enchytraeids in the field under differing soil moisture regimes. Environmental Toxicology and Chemistry, 25, 604-612, DOI: 10.1897/05-076R.1.

35. Marschner H. (1993). Zinc Uptake from Soils, In: Robson A. D., editor Zinc in Soils and Plants. Dordrecht, The Netherlands: Kluwer Academic, 59-77.

36. Martinez C.E., and Martinez-Villegas N. (2008). Copper-alumina-organic matter mixed systems: Alumina transformation and copper speciation as revealed by EPR Spectroscopy. Environmental Science & Technology, 42, 4422-4427, DOI: 10.1021/es703206u.

37. McBride M.B., and Cai M.F. (2016). Copper and zinc aging in soils for a decade: changes in metal extractability and phytotoxicity. Environmental Chemistry, 13, 160-167, DOI: 10.1071/en15057.

38. Mertens J., and Smolders E. (2013). Zinc, In: Alloway B. J., editor Heavy metals in soils: trace metals and metalloids in soils and their bioavailability. Dordrecht: Springer Science & Business Media, 465-493, DOI: 10.1007/978-94-007-4470-7_17.

39. Mertens J., Wakelin S.A., Broos K., McLaughlin M.J., and Smolders E. (2010). Extent of copper tolerance and consequences for functional stability of the ammonia-oxidizing community in long-term copper-contaminated soils. Environmental Toxicology and Chemistry, 29, 2737, DOI: 10.1002/etc.16.

40. Mirmonsef H., Hornum H.D., Jensen J., and Holmstrup M. (2017). Effects of an aged copper contamination on distribution of earthworms, reproduction and cocoon hatchability. Ecotoxicology and Environmental Safety, 135, 267-275, DOI: 10.1016/j.ecoenv.2016.10.012.

41. Mondaca P, Catrin J., Verdejo J., Sauve S., and Neaman A. (2017). Advances on the determination of thresholds of Cu phytotoxicity in field-contaminated soils in central Chile. Environmental Pollution, 223, 146-152, DOI: 10.1016/j.envpol.2016.12.076.

42. Nahmani J., and Lavelle P (2002). Effects of heavy metal pollution on soil macrofauna in a grassland of Northern France. European Journal of Soil Biology, 38, 297-300, DOI: 10.1016/s1164-5563(02)01169-x.

43. Naveed M., Moldrup P, Arthur E., Holmstrup M., Nicolaisen M., Tuller M., Herath L., Hamamoto S., Kawamoto K., Komatsu T., Vogel H.J., and de Jonge L.W. (2014). Simultaneous Loss of Soil Biodiversity and Functions along a Copper Contamination Gradient: When Soil Goes to Sleep. Soil Science Society of America Journal, 78, 1239-1250, DOI: 10.2136/sssaj2014.02.0052.

44. Neaman A., Selles I., Martinez C.E., and Dovletyarova E.A. (2020). Analyzing soil metal toxicity: Spiked or field-contaminated soils? Environmental Toxicology and Chemistry, 39, 513-514, DOI: 10.1002/etc.4654.

45. Neaman A., Verdejo J., Ramirez M., and Pinochet D. (2021). Phytoextraction of metals from contaminated soils: Chance or utopia? Agro Sur, 49, 1-4, DOI: 10.4206/agrosur.2021.v49n1-01.

46. Nolan A.L., Zhang H., and McLaughlin M.J. (2005). Prediction of zinc, cadmium, lead, and copper availability to wheat in contaminated soils using chemical speciation, diffusive gradients in thin films, extraction, and isotopic dilution techniques. Journal of Environmental Quality, 34, 496-507, DOI: 10.2134/jeq2005.0496.

47. Nordgren A., Kauri T., Baath E., and Soderstrom B. (1986). Soil microbial activity, mycelial lengths and physiological groups of bacteria in a heavy metal polluted area. Environmental Pollution Series a-Ecological and Biological, 41,89-100, DOI: 10.1016/0143-1471(86)90108-x.

48. Posthuma L., and Notenboom J. (1996). Toxic effects of heavy metals in three worm species exposed in artificially contaminated soil substrates and contaminated field soils. Report n°719102048. Bilthoven, The Netherlands: National Institute of Public Health and The Environment.

49. Prudnikova E.V., Neaman A., Terekhova V.A., Karpukhin M.M., Vorobeichik E.L., Smorkalov I.A., Dovletyarova E.A., Navarro-Villarroel C., Ginocchio R., and Penaloza P. (2020). Root elongation method for the quality assessment of metal-polluted soils: Whole soil or soil-water extract? Journal of Soil Science and Plant Nutrition, 20, 2294-2303, DOI: 10.1007/s42729-020-00295-x.

50. Metal Ecotoxicity Studies with Artificially Contaminated versus Anthropogenically Contaminated Soils: Literature Review, Methodological Pitfalls and Research Priorities

51. Sauvé S. (2002). Speciation of Metals in Soils, In: Allen H. E., editor Bioavailability of Metals in Terrestrial Ecosystems: Importance of Partitioning for Bioavailability to Intervebrates, Microbes, and Plants. Pensacola, Florida: Society of Environmental Toxicology and Chemistry (SETAC), 7-37.

52. Sauvé S. (2006). Copper inhibition of soil organic matter decomposition in a seventy-year field exposure. Environmental Toxicology and Chemistry, 25, 854-857, DOI: 10.1897/04-575R.1.

53. Sauvé S., Cook N., Hendershot W.H., and McBride M.B. (1996). Linking plant tissue concentrations and soil copper pools in urban contaminated soils. Environmental Pollution, 94, 153-157,DOI: 10.1016/S0269-7491(96)00081-4.

54. Schoffer J.T., Sauvé S., Neaman A., and Ginocchio R. (2020). Role of leaf litter on the incorporation of copper-containing pesticides into soils under fruit production: A review. Journal of Soil Science and Plant Nutrition, 20, 990-1000, DOI: 10.1007/s42729-020-00186-1.

55. Scott-Fordsmand J.J., Krogh P.H., and Weeks J.M. (2000a). Responses of Folsomia fimetaria (Collembola: Isotomidae) to copper under different soil copper contamination histories in relation to risk assessment. Environmental Toxicology and Chemistry, 19, 1297-1303, DOI: 10.1002/etc.5620190511.

56. Scott-Fordsmand J.J., Weeks J.M., and Hopkin S.P. (2000b). Importance of contamination history for understanding toxicity of copper to earthworm Eisenia fetida (Oligochaeta: Annelida), using neutral-red retention assay. Environmental Toxicology and Chemistry, 19, 1774-1780, DOI: 10.1897/1551-5028(2000)019<1774:iochfu>;2.

57. Smolders E., Buekers J., Waegeneers N., Oliver I., and McLaughlin M.J. (2002). Effects of field and laboratory Zn contamination on soil microbial processes and plant growth. Final report to the International Lead and Zinc Research Organization (ILZRO).

58. Spurgeon D., and Hopkin S. (1995). Extrapolation of the laboratory-based OECD earthworm toxicity test to metal-contaminated field sites. Ecotoxicology, 4, 190-205, DOI: 10.1007/BF00116481.

59. Spurgeon D.J., and Hopkin S.P. (1996). Effects of metal-contaminated soils on the growth, sexual development, and early cocoon production of the earthworm Eisenia fetida, with particular reference to zinc. Ecotoxicology and Environmental Safety, 35, 86-95, DOI: 10.1006/eesa.1996.0085.

60. Spurgeon D.J., Ricketts H., Svendsen C., Morgan A.J., and Kille P. (2005). Hierarchical responses of soil invertebrates (earthworms) to toxic metal stress. Environmental Science & Technology, 39, 5327-5334, DOI: 10.1021/es050033k.

61. Stowhas T., Verdejo J., Yanez C., Celis-Diez J.L., Martinez C.E., and Neaman A. (2018). Zinc alleviates copper toxicity to symbiotic nitrogen fixation in agricultural soil affected by copper mining in central Chile. Chemosphere, 209 960-963, DOI: 10.1016/j.chemosphere.2018.06.166.

62. Stuckey J.W., Neaman A., Verdejo J., Navarro-Villarroel C., Penaloza P, and Dovletyarova E.A. (2021). Zinc alleviates copper toxicity to lettuce and oat in copper contaminated soils. Journal of Soil Science and Plant Nutrition, DOI: 10.1007/s42729-021-00435-x.

63. Tarasova E., Drogobuzhskaya S., Tapia-Pizarro F., Morev D.V., Brykov V.A., Dovletyarova E.A., Slukovskaya M., Navarro-Villarroel C., Paltseva A.A., and Neaman A. (2020). Vermiculite-lizardite industrial wastes promote plant growth in a peat soil affected by a Cu/Ni smelter: a case study at the Kola Peninsula, Russia. Journal of Soil Science and Plant Nutrition, 20, 1013-1018, DOI: 10.1007/s42729-020-00188-z.

64. van Gestel C.A.M. (2012). Soil ecotoxicology: state of the art and future directions. Zookeys, 275-296, DOI: 10.3897/zookeys.176.2275.

65. Van Zwieten L., Rust J., Kingston T., Merrington G., and Morris S. (2004). Influence of copper fungicide residues on occurrence of earthworms in avocado orchard soils. Science of the Total Environment, 329, 29-41, DOI: 10.1016/j.scitotenv.2004.02.014.

66. Vanhala PT., and Ahtiainen J.H. (1994). Soil respiration, ATP content, and Photobacterium toxicity test as indicators of metal pollution in soil. Environmental Toxicology and Water Quality, 9, 115-121, DOI: 10.1002/tox.2530090207.

67. Verdejo J., Ginocchio R., Sauve S., Mondaca P, and Neaman A. (2016). Thresholds of copper toxicity to lettuce in field-collected agricultural soils exposed to copper mining activities in Chile. Journal of Soil Science and Plant Nutrition, 16, 154-158, DOI: 10.4067/S0718-95162016005000011.

68. Verdejo J., Ginocchio R., Sauve S., Salgado E., and Neaman A. (2015). Thresholds of copper phytotoxicity in field-collected agricultural soils exposed to copper mining activities in Chile. Ecotoxicology and Environmental Safety, 122, 171-177, DOI: 10.1016/j.ecoenv.2015.07.026.

69. Wang Z.Q., Tian H.X., Lei M., Megharaj M., Tan X.P, Wang F., Jia H.Z., and He W.X. (2020). Soil enzyme kinetics indicate ecotoxicity of longterm arsenic pollution in the soil at field scale. Ecotoxicology and Environmental Safety, 191, DOI: 10.1016/j.ecoenv.2020.110215.

Supplementary files

1. Supplementary Tables
Type Research Instrument
Download (109KB)    
Indexing metadata

For citation:

Santa-Cruz J., Peñaloza P., Korneykova M.V., Neaman A. Thresholds of Metal and Metalloid Toxicity In Field-Collected Anthropogenically Contaminated Soils: A Review. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(2):6-21.

Views: 197

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)