Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Long-Term Studies Of Surface-Sediment Diatom Assemblages In Assessing The Ecological State Of Lake Ladoga, The Largest European Lake

https://doi.org/10.24057/2071-9388-2020-174

Full Text:

Abstract

The study continues a series of observations started in the late 1950s, aimed at inferring changes in the Lake Ladoga ecosystem state recorded in the surface-sediment diatom assemblages. At the pre-anthropogenic stage (prior to the 1960s), the composition of the surface-sediment diatom assemblages indicated an oligotrophic state of Lake Ladoga. With the increased P load to the lake (late 1960s–1980s), the transition to a mesotrophic state was recorded via increased proportions of eutrophic species and decreased abundances of the taxa typical of the pre-anthropogenic stage. In the early 1990s, the composition of the surface-sediment diatom assemblages still indicated a mesotrophic state despite a decreased external P load. At the present de-eutrophication stage of Lake Ladoga (the 2000s), the abundances of eutrophic taxa steadily decrease while some taxa typical of the pre-anthropogenic period return to their dominating position in the surface-sediment diatom assemblages. However, despite the decreased P concentrations, the Lake Ladoga ecosystem has not returned to its pre-anthropogenic state as indicated by the present-day composition of the surface-sediment diatom assemblages. This suggests a delayed ecosystem response to the decreased anthropogenic pressure, and possibly some irreversible changes resulting from the eutrophication. At present, de-eutrophication processes and ecosystem recovery are superimposed upon the recent climatic changes that govern the onset and duration of the vegetative seasons for the phytoplankton communities in Lake Ladoga. The diatom-inferred changes in the ecological state of Lake Ladoga are in agreement with the results of longterm hydrochemical and hydrobiological studies.

About the Author

Anna V. Ludikova
Institute of Limnology of the Russian Academy of Sciences
Russian Federation

Sevastyanova Str. 9, St. Petersburg, 196105



References

1. Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W.,. Livingstone D Adrian R., O’Reilly C.M., Zagarese H., Baines S.B., Hessen D.O., Keller W.,. Livingstone D.M, Sommaruga R., Straile D., Van Donk E., Weyhenmeyer G.A., and Winder M. (2009) Lakes as sentinels of climate change. Limnology and Oceanography, 54, 2283–2297. https://doi.org/10.4319/lo.2009.54.6_part_2.2283

2. Ansari A., Gill S., eds. (2014) Eutrophication: Causes, Consequences and Control. Vol. 2 Dordrecht: Springer, https://doi.org/10.1007/97894-007-7814-6

3. Balakhontsev E.N. (1909) Botanical investigations of Lake Ladoga. St. Petersburg. (In Russian).

4. Barbiero R.P. and Tuchman M.L. (2001) Results from the U.S. EPA’s Biological Open Water Surveillance Program of the Laurentian Great Lakes: I. Introduction and Phytoplankton Results, Journal of Great Lakes Research, 27, 134-154. https://doi.org/10.1016/S0380-1330(01)70628-4

5. Battarbee R.; Anderson N.J.; Jeppesen E. and Leavitt P.I (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology, 50, 1772-1780. https://doi.org/10.1111/j.1365-2427.2005.01427.x

6. Battarbee, R.W., Anderson,N. J., Jeppesen, E., and Leavitt, P.R. (2005) Combining palaeolimnological and limnological approaches in assessing lake ecosystem response to nutrient reduction. Freshwater Biology, 50, 1772–80. https://doi.org/10.1111/j.1365-2427.2005.01427.x

7. Bennion H. (1995) Surface-sediment diatom assemblages in shallow, artificial, enriched ponds, and implication for reconstructing trophic status. Diatom Research, 10, 1–19.

8. Bennion H., Battarbee R.W., Sayer C. D., Simpson G. L. and Davidson T.A. (2011) Defining reference conditions and restoration targets for lake ecosystems using palaeolimnology: a synthesis. Journal of Paleolimnology, 45:533–544. DOI 10.1007/s10933-010-9419-3

9. Bennion H., Carvalho L., Sayer C. D., Simpson G. L., and Wischnewski J. (2012) Identifying from recent sediment records the effects of nutrients and climate on diatom, dynamics in Loch Leven. Freshwater Biology, 57, 2015-2029. https://doi.org/10.1111/j.1365-2427.2011.02651.x

10. Bennion H., Simpson G. and Goldsmith B.J. (2015) Assessing degradation and recovery pathways in lakes impacted by eutrophication using the sediment record. Frontiers in Ecology and Evolution, 3, Article 94. https://doi.org/10.3389/fevo.2015.00094

11. Bennion H., Wunsam S. and Schmidt R. (1995) The validation of diatom-phosphorus transfer functions: an example from Mondsee, Austria. Freshwater biology, 34, 271-283.

12. Berthon V., Alric B., Rimet F. and Perga M.-E. (2014) Sensitivity and responses of diatoms to climate warming in lakes heavily influenced by humans. Freshwater Biology, 59, 1755-1767. doi:10.1111/fwb.12380

13. Bradbury J.P., Colman S.M., and Dean W.E. (2004) Limnological and climatic environments at Upper Klamath Lake, Oregon during the past 45,000 years. Journal of Paleolimnology, 31, 167–188. doi:10.1023/B:JOPL.0000019232.74649.02

14. Canter, H.M. and Haworth, E.Y. (1991) The occurrence of two new planktonic diatom populations in the English Lake District: Aulacoseira islandica subspecies helvetica and A. ambigua Freshwater Forum, 1, 1 39-48.

15. Carvalho L., Miller C., Spears B., Gunn I., Bennion H., Kirika A. and May L. (2012) Water quality of Loch Leven: responses to enrichment, restoration and climate change. Hydrobiologia, 681, 35–47. doi: 10.1007/s10750-011-0923-x

16. Chekryzheva T.A. (2015) Diatoms in the plankton of Lake Onego. Proceedings of the Karelian Research Center, RAS, 4, 110-116. DOI: 10.17076/bg10 (In Russian)

17. Cohen AS (2003) Paleolimnology: the history and evolution of lake systems. New York: Oxford University Press

18. Davydova N. N., Kalmykov M., Sandman O., Ollikainen M. and Simola H. (1993) Recent paleolomnology of Kondopoga Bay, Lake Onega, reflecting pollution by a large palp mill. Verhandlungen des Internationalen Verein Limnologie, 25, 1086–1090.

19. Davydova N., Simola H., Subetto D. Pushenko M., Vasiljeva E., Krylenkova N. and Scherbak V. (1994) Bottom sediments and diatoms as indicators of the present state of the Lake Ladoga ecosystem. Publications of Karelian Institute, 111, 144–156.

20. Davydova N., Subetto D., Belkina N., Simola H. and Kukkonen M. (2000) Palaeolimnology and sediments of Lake Ladoga: monitoring programme proposal. Environmental monitoring in Lake Ladoga. Proposal for a monitoring programme. Karelian Institute. Working Papers, 1, 68–75.

21. Davydova N.N. (1961) To the characteristics of the diatom assemblages in Lake Ladoga sediments. Botanical Journal, XLVI, 722-726 .(in Russian).

22. Davydova N.N. (1968) The composition and conditions of formation diatom complexes on the surface layer of bottom deposits of Ladoga Lake. In: Plant resources of Lake Ladoga. Leningrad: Nauka, 131–174. (in Russian).

23. Davydova N.N. (1985) Diatoms as indicators of Holocene lake environments Leningrad: Nauka. (in Russian with English summary).

24. Davydova N.N., Kukkonen M., Simola H. and Subetto D. (1999) Human impact on Lake Ladoga as indicated by long-term changes of sedimentary diatom assemblages // Boreal Environmental Research, 4, 269–275.

25. Davydova N.N., Kurochkina A.A., Stravinskaya E.A. and Trifonova I.S. (1981) Eutrophication processes in Lake Ladoga. In: Paleolimnological approach to studying the anthropogenic impact on lakes. Leningrad: USSR Geographic Society Publishing House, 5-13. (in Russian)

26. Davydova N.N., Subetto D.A., Kukkonen M. and Simola H. (1997) Human impact on the Lake Ladoga geosystem as inferred from the long-term sediment studies. Proceedings of the Russian Geographic Society, 129(6), 48–58. (in Russian).

27. Dixit S.S., Smol J.P., Kingston J.C., Charles D.F. (1992) Diatoms: powerful indicators of environmental change // Environmental Science and Technology, 26, 23-33.

28. Dokulil M.T. and K. Teubner (2005) Do phytoplankton communities correctly track trophic changes? An assessment using directly measured and palaeolimnological data. Freshwater Biology, 50, 1594–1604. doi:10.1111/j.1365-2427.2005.01431.x

29. Fielding J.J., Croudace I.W., Kemp A.E.S., Pearce R.B., Cotterill C.J., Langdon P. and Avery R. (2020) Tracing lake pollution, eutrophication and partial recovery from the sediments of Windermere, UK, using geochemistry and sediment microfabrics. Science of The Total Environment, 722, Article 137745. https://doi.org/10.1016/j.scitotenv.2020.137745.

30. Genkal S.I. (1996) On the morphological variability of the diatom Aulacoseira subarctica (O. Müller) Haworth. In: Ecological and physiological studies of algae and their implication in assessing the state of the natural waters. Yaroslavl, 19–20 (in Russian).

31. Gerasimov D.V. and Subetto D.A. (2009) History of the Lake Ladoga in the light of the archaeological data. Izvestia: Herzen State University journal of humanities and sciences, 106, 37-49 (In Russian with English abstract)

32. Gerten D. and Adrian R. (2002) Effects of climate warming, North Atlantic Oscillation, and El Niño-Southern Oscillation on thermal conditions and plankton dynamics in Northern Hemispheric lakes. The Scientific World Journal, 2, 586-606. DOI: 10.1100/tsw.2002.141

33. Gibson Ch.E., Anderson N.J. and Haworth E.Y. (2003) Aulacoseira subarctica: taxonomy, physiology, ecology and palaeoecology. European Journal of Phycology, 38, 83-101, DOI: 10.1080/0967026031000094102

34. Hadley K.R., Paterson A.M., Hall R.I. and Smol J.P. (2013) Effects of multiple stressors on lakes in south-central Ontario: 15 years of change in lakewater chemistry and sedimentary diatom assemblages. Aquatic Science, 75, 349–360. DOI 10.1007/s00027-012-0280-5

35. Hobæk A., Løvik J.E., Rohrlack T., Moe S.J., Grung M., Bennion H., Clarke G. and Piliposyan, G.T. (2012) Eutrophication, recovery and temperature in Lake Mjøsa: detecting trends with monitoring data and sediment records.Freshwater Biology, 57, 1998-2014. https://doi.org/10.1111/j.1365-2427.2012.02832.x

36. Holopainen A.-L. and Letanskaya G.I. (1999) Effects of nutrient load on species composition and productivity of phytoplankton in Lake Ladoga. Boreal Environmental Research, 4, 215–227.

37. Horn H., Paul L., Horn W. and Petzoldt Th. (2011) Long-term trends in the diatom composition of the spring bloom of a German reservoir: is Aulacoseira subarctica favoured by warm winters? Freshwater Biology, 56, 2483–2499. DOI:10.1111/j.1365-2427.2011.02674.x

38. Kalff J. (2001) Limnology: inland water ecosystems. Prentice Hall, New Jersey.

39. Kilham S.S. Theriot E.C. and Fritz S.C. (1996) Linking planktonic diatoms and climate change in the large lakes of the Yellowstone ecosystem using resource theory. Papers in the Earth and Atmospheric Sciences, 12, 1052-1062.

40. Krammer K. and Lange-Bertalot H. (1986–1991) Bacillariophyceae. In: H. Ettl, J. Gerloff, H. Heying and D. Mollenhauer, eds. // Süßwasserflora von Mitteleuropa. Stuttgart: Gustav Fisher Verlag, Bd 2/1–4.

41. Kukkonen M., Simola H. (1997) Diatoms and biogenic silica in two 210Pb-dated sediment cores from Lake Ladoga. Publications of Karelian Institute, 117, 279-282

42. Kurashov E.A., Barbashova M.A., Dudakova D.S., Kapustina L.L., Mitrukova G.G., Rusanov A.G., Aleshina D.G., Iofina I.V., Protopopova E.V., Rodionova N.V. and Trifonova M.S. (2018) Lake Ladoga ecosystem: present-day conditions and trends in late XX to early XXI century. Biosfera, 10(2), 65–121 (in Russian with English summary). DOI: 10.24855/BIOSFERA.V10I2.439

43. Leppäranta, M. (2015) Freezing of lakes and the evolution of their ice cover. Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3642-29081-7

44. Letanskaya G.I. and Protopopova E.V. (2012) The current state of phytoplankton in Lake Ladoga (2005–2009). Inland water biology, 4, 17–24. (in Russian).

45. Liukkonen M., Kairesalo T. and Keto J. (1993) Eutrophication and recovery of Lake Vesijarvi (south Finland): Diatom frustules in varved sediments over a 30-year period. Hydrobiologia, 269/270, 415-426.

46. Lotter A.F. (1989) Subfossil and modern diatom plankton and the paleolimnology of Rotsee (Switzerland) since 1850. Aquatic Sciences, 51, 338–350.

47. Ludikova A.V. (2017) Subfossil diatom assemblages in assessing the state of water environment of Lake Ladoga. Regional ecology, 4, 53–61 (in Russian with English summary).

48. Ludikova A.V. (2018) Diatoms in Late Glacial and Holocene sediments in Lake Ladoga. In: Geography: Development of Science and Еducation. Saint Petersburg: Herzen State Pedagogical University Publishing House, 407–412 (in Russian with English summary).

49. Ludikova A.V. (2020) Siliceous microalgae in the Holocene Lake Ladoga sediments. Limnology and Freshwater Biology, 4, 453-454. DOI: https://doi.org/10.31951/2658-3518-2020-A-4-453

50. Ludikova A.V., Belkina N.A., Strakhovenko V.D., Subetto D.A. and Potakhin M.S. (2020) Diatom assemblages from the sediment traps in Lake Onega: preliminary results Limnology and Freshwater Biology, 4, 446-447. DOI:10.31951/2658-3518-2020-A-4-446

51. Lund J.W.G. (1954) The seasonal cycle of the plankton diatom, Melosira italica (Ehr.) Kütz. subsp. subarctica O. Müll. Journal of Ecology, 42, 151-179.

52. Naumenko M.A. (2021) Features of climatic relationship between surface water and air temperature during the spring heating of Lake Ladoga. Fundamental and Applied Hydrophysics (in press)

53. Naumenko M.A. and Karetnikov S.G. (2017) The features of multi-year variations of air temperature in the north of Lake Ladoga. Achievements of Modern Natural Sciences, 5, 114-122. (in Russian with English summary)

54. Nõges T. (2004) Reflection of the changes of the North Atlantic Oscillation Index and the Gulf Stream Position Index in the hydrology and phytoplankton of Võrtsjärv, a large, shallow lake in Estonia. Boreal diatom-inferred total phosphorus. Environmental Research, 9: 401–407.

55. Petrova N.A. (1968) Phytoplankton of Lake Ladoga. In: Plant resources of Lake Ladoga. Leningrad: Nauka, 73–130 (in Russian).

56. Petrova N.A. (1982) Level of quantitative development and floristic composition In: Anthrophogenic eutrophication of Lake Ladoga. Leningrad: Nauka, 124–130. (in Russian).

57. Petrova N.A. (1990) Phytoplantkon successions under anthropogenic eutrophication of large lakes. Leningrad: Nauka. (in Russian)

58. Petrova T.N. (2019) Distribution of phosphorus in Lake Ladoga water according to the results of long-term monitoring. In: Geography: Development of Science and Еducation. Saint Petersburg: Asterion, Herzen State Pedagogical University Publishing House, Vol. I., 386–390 (in Russian with English summary).

59. Pienitz R., Roberge K., and Vincent W.F. (2006) Three hundred years of human-induced change in an urban lake: paleolimnological analysis of Lac Saint-Augustin, Quebec City, Canada. Canadian Journal of Botany, 84, 303–320. doi:10.1139/B05-152

60. Popovskaya G. I., Genkal S.I. and Likhoshway Ye.V. (2002) Diatom algae plankton of Baikal. Atlas-opredelitel. Novosibirsk: Nauka Publishers. (in Russian with English summary).

61. Räsänen J., Kauppila T. and Salonen V.P. (2006) Sediment-based investigation of naturally or historically eutrophic lakes -- implications for lake management. Journal of Environmental Management, 79, 253-65. doi: 10.1016/j.jenvman.2005.08.001

62. Raspletina G.F. (1982) Regime of nutrients. In: Anthrophogenic eutrophication of Lake Ladoga. Leningrad: Nauka, 79–101. (in Russian).

63. Raspletina G.F. and Susareva O.M. (2002) Nutrients. In: V.A. Rumyantsev and V.G. Drabkova, eds. Lake Ladoga: past, present and future. Saint Petersburg: Nauka, 77–86 (in Russian).

64. Raspletina G.F., Ulyanova D.Z. and Sherman E.E. (1967) Hydrochemistry of Lake Ladoga. In: Hydrochemistry and hydrooptics of Lake Ladoga. Leningrad: Nauka, 60–122. (in Russian).

65. Reavie E. D., Sgro G.V., Estepp L.R., Bramburger A.J., Chraïbi V.L.S., Pillsbury R.W., Cai M., Stow C.A. and Dove A. (2017) Climate warming and changes in Cyclotella sensu lato in the Laurentian Great Lakes. Limnology and Oceanography, 62, 768-783. https://doi.org/10.1002/lno.10459

66. Reavie E.D., Smol J.P. and Dillon P.J. (2002) Inferring long-term nutrient changes in southeastern Ontario lakes: comparing paleolimnological and mass-balance models. Hydrobiologia, 481, 61–74.

67. Rühland K.M., Paterson A.M. and Smol J.P. (2015) Lake diatom responses to warming: reviewing the evidence. Journal of Paleolimnology, 54,1–35. DOI: 10.1007/s10933-015-9837-3

68. Rumyantsev V.A. and Kondratyev S.A., eds. (2013) Ladoga. Saint Petersburg: Nestor-Istoriya. (in Russian with English summary).

69. Rumyantsev V.A., ed. (2015) Lake Ladoga and remarkable sights on its shores. Atlas. Saint Petersburg: Nestor-Istoriya. (in Russian)

70. Sapelko T., Pozdnyakov Sh., Kuznetsov D. Ludikova A., Ivanova E., Guseva M. and Zazovskaya E. (2019) Holocene sedimentation in the central part of Lake Ladoga. Quaternary International, 524, 67–75. DOI: https://doi.org/10.1016/j.quaint.2019.05.028

71. Schindler D.W. (2006) Recent advances in the understanding and management of eutrophication. Limnology and Oceanography, 51, 356–363, https://doi.org/10.4319/lo.2006.51.1_part_2.0356

72. Schindler D.W., Carpenter S.R., Chapra S.C., Hecky R.E. and Orihel D.M. (2016) Reducing Phosphorus to Curb Lake Eutrophication is a Success. Environmental Science and Technology, 50, 8923-89-29. https://doi.org/10.1021/acs.est.6b02204

73. Sivarajah B., Rühland K.R., Labaj A., Paterson A.M. and Smol J.P. (2016) Why is the relative abundance of Asterionella formosa increasing in Boreal Shield lakes as nutrient levels decline? Journal of Paleolimnology, 55, 357–367. DOI: 10.1007/s10933-016-9886-2

74. Smol J. (2010) The power of the past: using sediments to track the effects of multiple stressors on lake ecosystem. Freshwater Biology, 55, 43-59 https://doi.org/10.1111/j.1365-2427.2009.02373.x

75. Smol J.P. (2008) Pollution of Lakes and Rivers: A Paleoenvironmental Perspective. 2nd ed. Oxford: Blackwell Publishing.

76. Smol J.P., Stoermer E.F., eds. (2010) The Diatoms: Applications for the Environmental and Earth Sciences. 2nd ed. Cambridge: Cambridge University Press, https://doi.org/10.1017/CBO9780511763175

77. Sochuliaková L., Sienkiewicz E., Hamerlík L., Svitok M., Fidlerová D. and Bitušík P. (2018) Reconstructing the trophic history of an alpine lake (High Tatra Mts.) using subfossil diatoms: disentangling the effects of climate and human influence. Water, Air and Soil Pollution, 229, Article number: 289. https://doi.org/10.1007/s11270-018-3940-9

78. Stoermer E.F., Kociolek J.P. Schelske C.L. and Conley D.J. (1985) Siliceous microfossil succession in the recent history of Lake Superior. Proceedings of the Academy of Natural Sciences of Philadelphia, 137, 106–118.

79. Stoermer E.F., Kreis R.G. and Sicko-Goad L. (1981) A systematic, quantitative and ecological comparison of Melosira islandica O. Müll. with M. granulata (Ehr.) Ralfs from the Laurentian Great Lakes. Journal of Great Lakes Research, 7, 345-356. doi:10.1016/S0380-1330(81)72063-X

80. Stoermer E.F., Wolin J.A., Schelske C.L. and Conley D.J. (1985) An assessment of ecological changes during the recent history of Lake Ontario based on siliceous algal microfossils preserved in the sediments. Journal of Phycology, 21, 257-276. DOI: 10.1111/j.0022-3646.1985.00257.x

81. Subetto D.A., Davydova N.N. and Rybalko A.E. (1998) Contribution to the lithostratigraphy and history of lake Ladoga. Palaeogeography, Palaeoclimatology, Palaeoecology, 140, 113–119.

82. Trifonova I. and Genkal S. (2001) Species of the genus Aulacoseira Thwaites in lakes and rivers of north-western Russia – Distribution and ecology. In: Proceedings of the 16th International Diatom Athens: University of Athens, 315-323.

83. Trifonova I.S. (1990) Ecology and Succession of Lake Phytoplankton, Leningrad: Nauka. (in Russian).

84. Tuji A. and Houki A. (2004) Taxonomy, ultrastructure, and biogeography of the Aulacoseira subarctica species complex. Bulletin of the National Science Museum, Tokyo, Ser. B, 30, 35–54

85. Van Dam H., Mertens A. and Sinkeldam J. (1994) A coded checklist and ecological indicator values of freshwater diatoms from the Netherlands. Netherlands Journal of Aquatic Ecology, 28, 117-133.

86. Wetzel, R. G. (2001). Limnology Lake and River Ecosystems. 3rd ed. San Diego CA: Academic Press.

87. Weyhenmeyer G.A., Westöö A.-K. and E. Willén (2008) Increasingly ice-free winters and their effects on water quality in Sweden’s largest lakes. Hydrobiologia, 599,111–118. DOI: 10.1007/s10750-007-9188-9

88. Willén E. (1987) Phytoplankton and reversed Eutrophication in Lake Mälaren, Central Sweden, 1965–1983. British Phycological Journal, 22, 193-208.https://doi.org/10.1080/00071618700650241

89. Willén E. (2000) Phytoplankton in water quality assessment – an indicator concept. In: Hydrological and Limnological Aspects of Lake Monitoring. John Wiley and Sons Ltd, 58–80.

90. Willén E. (2002) Phytoplankton and Water Quality Characterization: Experiences from the Swedish Large Lakes Mälaren, Hjälmaren, Vättern and Vänern. Ambio, 30, 529-537

91. Wilson S.E., Walker I.R., Mott R.J. and Smol J.P. (1993) Climatic and limnological changes associated with the Younger Dryas in Atlantic Canada. Climate Dynamics, 8, 177-187.

92. Yang J.-R. and Dickman M. (1993) Diatoms as indicators of lake trophic status in Central Ontario, Canada. Diatom Research, 8, 179-193.


For citation:


Ludikova A.V. Long-Term Studies Of Surface-Sediment Diatom Assemblages In Assessing The Ecological State Of Lake Ladoga, The Largest European Lake. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(1):251-262. https://doi.org/10.24057/2071-9388-2020-174

Views: 248


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)