Advanced search

Daily Variations In Wet Deposition And Washout Rates Of Potentially Toxic Elements In Moscow During Spring Season

Full Text:


For the first time, the wet deposition and washout rates of soluble forms of potentially toxic elements (PTEs) were estimated in rains during the spring AeroRadCity experiment in Moscow. Rains are an important factor in reducing atmospheric pollution with PTEs in Moscow. Due to the resuspension of contaminated particles of road dust and urban soils, industrial and traffic impact, waste and biomass burning, rainwater is highly enriched in Sb, Pb, Se, Cd, and S, and less enriched in P, Ba, As, W, Mn, Sn, Na, Co, Ni, and Be. Significant wet deposition (μg/m2 per event) and washout rates (μg/m2 per hour) of PTEs were revealed during the public holidays in May which corresponded to the elevated aerosol content due to predominant air advection from southern and south-western regions in this period. During continuous rains, the level of PTEs wet deposition sharply decreases on the second and subsequent days due to the active below-cloud washout of aerosols during the initial precipitation events. We show that the length of the dry period and aerosol content before the onset of rain determines the amount of solid particles in rainwater, which leads to an increase in rainwater pH, and strongly affects wet deposition and washout rates of PTEs of mainly anthropogenic origin (W, Zn, Bi, Cd, Sb, Ni, B, S, K, and Cu). At the same time rainfall intensity contributes to an increase in wet deposition and washout rates of Se, As, B, Cu, Sb, S, Cd, Ba, Rb, and K. The obtained results provide a better understanding of atmospheric deposition processes and can be useful in assessing the urban environmental quality.

About the Authors

Dmitry V. Vlasov
Lomonosov Moscow State University
Russian Federation

Leninskie gory 1, Moscow, 119991

Irina D. Eremina
Lomonosov Moscow State University
Russian Federation

Leninskie gory 1, Moscow, 119991

Galina L. Shinkareva
Lomonosov Moscow State University
Russian Federation

Leninskie gory 1, Moscow, 119991

Natalia E. Chubarova
Lomonosov Moscow State University
Russian Federation

Leninskie gory 1, Moscow, 119991

Nikolay S. Kasimov
Lomonosov Moscow State University
Russian Federation

Leninskie gory 1, Moscow, 119991


1. Al-Momani I. (2008). Wet and dry deposition fluxes of inorganic chemical species at a rural site in Northern Jordan. Archives of Environmental Contamination and Toxicology, 55(4), 558-565, DOI: 10.1007/s00244-008-9148-z.

2. Basha S., Jhala J., Thorat R., Goel S., Trivedi R., Shah K., Menon G., Gaur P., Mody K. and Jha B. (2010). Assessment of heavy metal content in suspended particulate matter of coastal industrial town, Mithapur, Gujarat, India. Atmospheric Research. 97(1-2), 257-265, DOI: 10.1016/j.atmosres.2010.04.012.

3. Bayramoğlu Karşı M., Yenisoy-Karakaş S. and Karakaş D. (2018). Investigation of washout and rainout processes in sequential rain samples. Atmospheric Environment. 190, 53-64, DOI: 10.1016/j.atmosenv.2018.07.018.

4. Bencharif-Madani F., Ali-Khodja H., Kemmouche A., Terrouche A., Lokorai K., Naidja L. and Bouziane M. (2019). Mass concentrations, seasonal variations, chemical compositions and element sources of PM10 at an urban site in Constantine, northeast Algeria. Journal of Geochemical Exploration. 206, 106356, DOI: 10.1016/j.gexplo.2019.106356.

5. Bufetova M. (2019). Assessment of income and elimination of heavy metals in the Taganrog bay of the Sea of Azov. Environmental Safety of the Coastal and Shelf Zones of the Sea. 2, 78-85, DOI: 10.22449/2413-5577-2019-2-78-85.

6. Chance R., Jickells T. and Baker A. (2015). Atmospheric trace metal concentrations, solubility and deposition fluxes in remote marine air over the south-east Atlantic. Marine Chemistry. 177, 45-56, DOI: 10.1016/j.marchem.2015.06.028.

7. Cheng M.-C. and You C.-F. (2010). Sources of major ions and heavy metals in rainwater associated with typhoon events in southwestern Taiwan. Journal of Geochemical Exploration, 105 (3), 106-116, DOI: 10.1016/j.gexplo.2010.04.010.

8. Cheng Y., Lee S., Gu Z., Ho K., Zhang Y., Huang Y., Chow J., Watson J., Cao J. and Zhang R. (2015). PM2.5 and PM10-2.5 chemical composition and source apportionment near a Hong Kong roadway. Particuology, 18, 96-104, DOI: 10.1016/j.partic.2013.10.003.

9. Cheng Y., Liu Y., Huo M., Sun Q., Wang H., Chen Z. and Bai Y. (2011). Chemical characteristics of precipitation at Nanping Mangdang Mountain in Eastern China during spring. Journal of Environmental Sciences. 23(8), 1350-1358, DOI: 10.1016/S1001-0742(10)60560-8.

10. Cherednichenko V., Cherednichenko A., Cherednichenko Al. and Zheksenbaeva A. (2020). Heavy metal deposition through precipitation in Kazakhstan. Heliyon, 6, e05844, DOI: 10.1016/j.heliyon.2020.e05844.

11. Chon K., Kim Y., Bae D. and Cho J. (2015). Confirming anthropogenic influences on the major organic and inorganic constituents of rainwater in an urban area. Drinking Water Engineering and Science. 8(2), 35-48, DOI: 10.5194/dwes-8-35-2015.

12. Christian T., Yokelson R., Cardenas B., Molina L., Engling G. and Hsu S.-C. (2010). Trace gas and particle emissions from domestic and industrial biofuel use and garbage burning in central Mexico. Atmospheric Chemistry and Physics, 10, 565-584, DOI: 10.5194/acp-10-5652010

13. Chubarova N., Androsova E., Kirsanov A., Vogel B., Vogel H., Popovicheva O. and Rivin G. (2019). Aerosol and its radiative effects during the Aeroradcity 2018 Moscow experiment. Geography, Environment, Sustainability. 12(4), 114-131, DOI: 10.24057/2071-9388-2019-72.

14. Chubarova N., Nezval’ E., Belikov I., Gorbarenko E., Eremina I., Zhdanova E., Korneva I., Konstantinov P., Lokoshchenko M., Skorokhod A. and Shilovtseva O. (2014). Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years. Russian Meteorology and Hydrology, 39(9), 602-613, DOI: 10.3103/S1068373914090052.

15. Chubarova N., Zhdanova Ye., Androsova Ye., Kirsanov A., Shatunova M., Khlestova Yu., Volpert Ye., Poliukhov A., Eremina I., Vlasov D., Popovicheva O., Ivanov A., Gorbarenko Ye., Nezval Ye., Blinov D. and Rivin G. (2020). The aerosol urban pollution and its effects on weather, regional climate and geochemical processes. Ed. by N.Ye. Chubarova, Moscow: MAKS Press, DOI: 10.29003/m1475.978-5-317-06464-8

16. Chudaeva V., Chudaev O. and Yurchenko S. (2008). Chemical composition of precipitation in the southern part of the Russian Far East. Water Resources. 35(1), 58-70, DOI: 10.1134/S0097807808010077.

17. Cizmecioglu S. and Muezzinoglu A. (2008). Solubility of deposited airborne heavy metals. Atmospheric Research. 89(4), 396-404, DOI: 10.1016/j.atmosres.2008.03.012.

18. Demetriades A. and Birke M. (2015). Urban geochemical mapping manual: sampling, sample preparation, laboratory analysis, quality control check, statistical processing and map plotting. Brussels: EuroGeoSurveys.

19. Di Marco V., Tapparo A., Badocco D., D’Aronco S., Pastore P. and Giorio C. (2020). Metal ion release from fine particulate matter sampled in the Po Valley to an aqueous solution mimicking fog water: kinetics and solubility. Aerosol and Air Quality Research. 20(4), 720-729, DOI: 10.4209/aaqr.2019.10.0498.

20. Elansky N., Ponomarev N. and Verevkin Y. (2018). Air quality and pollutant emissions in the Moscow megacity in 2005–2014. Atmospheric Environment. 175, 54-64, DOI: 10.1016/j.atmosenv.2017.11.057.

21. Elansky N., Shilkin A., Ponomarev N., Semutnikova E. and Zakharova P. (2020). Weekly patterns and weekend effects of air pollution in the Moscow megacity. Atmospheric Environment. 224, 117303, DOI: 10.1016/j.atmosenv.2020.117303.

22. Elpat’evskii P. (1993). Geochemistry of migration flows in natural and natural-technogenic geosystems. Moscow, Russia: Nauka. Eremina I. (2019). Chemical composition of atmospheric precipitation in Moscow and the trends of its long-term changes. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya. 3, 3-10.

23. Eremina I., Aloyan A., Arutyunyan V., Larin I., Chubarova N. and Yermakov A. (2015). Acidity and mineral composition of precipitation in Moscow: Influence of deicing salts. Izvestiya, Atmospheric and Oceanic Physics, 51(6), 624-632, DOI: 10.1134/S0001433815050047.

24. Eremina I. and Vasil’chuk J. (2019). Temporal variations in chemical composition of snow cover in Moscow. Geography, Environment, Sustainability, 12(4), 148-158, DOI: 10.24057/2071-9388-2019-79.

25. Ermolin M., Fedotov P., Ivaneev A., Karandashev V., Fedyunina N. and Burmistrov A. (2018). A contribution of nanoscale particles of roaddeposited sediments to the pollution of urban runoff by heavy metals. Chemosphere, 210, 65-75, DOI: 10.1016/j.chemosphere.2018.06.150.

26. Fabretti J.-F., Sauret N., Gal J.-F., Maria P.-C. and Schärer U. (2009). Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France. Atmospheric Research, 94(2), 320-329, DOI: 10.1016/j.atmosres.2009.06.010.

27. Fedotov P., Ermolin M., Karandashev V. and Ladonin D. (2014). Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta, 130, 1-7, DOI: 10.1016/j.talanta.2014.06.040.

28. Gallorini M. (2000). Trace elements in atmospheric pollution processes: The contribution of Neutron Activation Analysis, In Aerosol Chemical Processes in the Environment, K.R. Spurny, ed, Boca Raton, USA: CRC Press, 431-456.

29. Galloway J., Thornton J., Norton S., Volchok H. and McLean R. (1982). Trace metals in atmospheric deposition: A review and assessment. Atmospheric Environment, 16(7), 1677–1700, DOI: 10.1016/0004-6981(82)90262-1.

30. Golubeva N., Matishov G. and Burtseva L. (2005). Precipitation of heavy metals in the Barents Sea region. Doklady Earth Sciences. 401(3), 469-472.

31. Grigoratos T. and Martini G. (2015). Brake wear particle emissions: a review. Environmental Science and Pollution Research, 22(4), 24912504, DOI: 10.1007/s11356-014-3696-8.

32. Grivas G., Cheristanidis S., Chaloulakou A., Koutrakis P. and Mihalopoulos N. (2018). Elemental composition and source apportionment of fine and coarse particles at traffic and urban background locations in Athens, Greece. Aerosol and Air Quality Research, 18(7), 1642-1659, DOI: 10.4209/aaqr.2017.12.0567.

33. Kamani H., Hoseini M., Safari G., Jaafari J. and Mahvi A. (2014). Study of trace elements in wet atmospheric precipitation in Tehran, Iran. Environmental Monitoring and Assessment, 186(8), 5059–5067, DOI: 10.1007/s10661-014-3759-9.

34. Kasimov N., Bezberdaya L., Vlasov D. and Lychagin M. (2019a). Metals, metalloids, and benzo[a]pyrene in PM10 particles of soils and road dust of Alushta city. Eurasian Soil Science, 52(12), 1608-1621, DOI: 10.1134/S1064229319120068.

35. Kasimov N., Kosheleva N., Vlasov D., Nabelkina K. and Ryzhov A. (2019b). Physicochemical properties of road dust in Moscow. Geography, Environment, Sustainability, 12(4), 96-113, DOI: 10.24057/2071-9388-2019-55.

36. Kasimov N., Vlasov D. and Kosheleva N. (2020). Enrichment of road dust particles and adjacent environments with metals and metalloids in eastern Moscow, Urban Climate, 32, 100638, DOI: 10.1016/j.uclim.2020.100638.

37. Konstantinova E., Minkina T., Konstantinov A., Sushkova S., Antonenko E., Kurasova A. and Loiko S. (2020). Pollution status and human health risk assessment of potentially toxic elements and polycyclic aromatic hydrocarbons in urban street dust of Tyumen city, Russia. Environmental Geochemistry and Health, DOI: 10.1007/s10653-020-00692-2.

38. Kosheleva N., Vlasov D., Korlyakov I. and Kasimov N. (2018). Contamination of urban soils with heavy metals in Moscow as affected by building development. Science of the Total Environment, 636, 854-863, DOI: 10.1016/j.scitotenv.2018.04.308.

39. Koulousaris M., Aloupi M. and Angelidis M. (2009). Total metal concentrations in atmospheric precipitation from the Northern Aegean Sea. Water, Air, and Soil Pollution, 201(1-4), 389-403, DOI: 10.1007/s11270-008-9952-0.

40. Kuderina T., Lunin V. and Suslova S. (2018). The geochemical content of precipitation in the forest-steppe landscapes of the Kursk biosphere station. Regional Environmental Issues. 2, 78-83, DOI: 10.24411/1728-323X-2018-12078.

41. Kumar S., Aggarwal S., Gupta P. and Kawamura K. (2015). Investigation of the tracers for plastic-enriched waste burning aerosols. Atmospheric Environment. 108, 49-58, DOI: 10.1016/j.atmosenv.2015.02.066.

42. Ladonin D. and Mikhaylova A. (2020). Heavy metals and arsenic in soils and street dust of the Southeastern administrative district of Moscow: long-term data. Eurasian Soil Science, 53(11), 1635-1644, DOI: 10.1134/S1064229320110095.

43. Ladonin D. and Plyaskina O. (2009). Isotopic composition of lead in soils and street dust in the Southeastern administrative district of Moscow. Eurasian Soil Science, 42(1), 93-104, DOI: 10.1134/S1064229309010128.

44. Landing W., Caffrey J., Nolek S., Gosnell K. and Parker W. (2010). Atmospheric wet deposition of mercury and other trace elements in Pensacola, Florida. Atmospheric Chemistry and Physics, 10(10), 4867-4877, DOI: 10.5194/acp-10-4867-2010.

45. Lim B., Jickells T. and Davies T. (1991). Sequential sampling of particles, major ions and total trace metals in wet deposition. Atmospheric Environment, 25(3-4), 745-762, DOI: 10.1016/0960-1686(91)90073-G.

46. Liu Y., Wang C., Yu Y., Chen Y., Du L., Qu X., Peng W., Zhang M. and Gui C. (2019). Effect of urban stormwater road runoff of different land use types on an urban river in Shenzhen, China. Water, 11(12), 2545, DOI: 10.3390/w11122545.

47. Liyandeniya A., Deeyamulla M. and Priyantha N. (2020). Source apportionment of rainwater chemical composition in wet precipitation at Kelaniya in Sri Lanka. Air Quality, Atmosphere & Health, DOI: 10.1007/s11869-020-00903-w.

48. Logiewa A., Miazgowicz A., Krennhuber K. and Lanzerstorfer C. (2020). Variation in the concentration of metals in road dust size fractions between 2 µm and 2 mm: Results from three metallurgical centres in Poland. Archives of Environmental Contamination and Toxicology, 78(1), 46-59, DOI: 10.1007/s00244-019-00686-x.

49. Long W., Zhou Y. and Liu P. (2020). Numerical simulation of the influence of major meteorological elements on the concentration of air pollutants during rainfall over Sichuan Basin of China. Atmospheric Pollution Research,11(11), 2036-2048, DOI: 10.1016/j.apr.2020.08.019

50. Loya-González D., López-Serna D., Alfaro-Barbosa J., López-Reyes A., González-Rodríguez H. and Cantú-Silva I. (2020). Chemical composition of bulk precipitation and its toxicity potential index in the metropolitan area of Monterrey, Northeastern Mexico. Environments, 7, 106, DOI: 10.3390/environments7120106.

51. Ma Y., Tang Y., Xu H., Zhang X., Liu H., Wang S. and Zhang W. (2019). Bulk/wet deposition of trace metals to rural, industrial, and urban areas in the Yangtze River Delta, China. Ecotoxicology and Environmental Safety, 169, 185-191, DOI: 10.1016/j.ecoenv.2018.11.002.

52. Mamoon A., Jahan S., He X., Joergensen N. and Rahman A. (2019). First flush analysis using a rainfall simulator on a micro catchment in an arid climate. Science of the Total Environment, 693, 133552, DOI: 10.1016/j.scitotenv.2019.07.358.

53. McHale M., Ludtke A., Wetherbee G., Burns D., Nilles M. and Finkelstein J. (2021). Trends in precipitation chemistry across the U.S. 19852017: Quantifyingthe benefits from 30 years of Clean Air Act amendment regulation. Atmospheric Environment. 247, 118219, DOI: 10.1016/j.atmosenv.2021.118219.

54. Morera-Gómez Y., Alonso-Hernández C., Santamaría J., Elustondo D., Lasheras E. and Widory D. (2020). Levels, spatial distribution, risk assessment, and sources of environmental contamination vectored by road dust in Cienfuegos (Cuba) revealed by chemical and C and N stable isotope compositions. Environmental Science and Pollution Research, 27(2), 2184-2196, DOI: 10.1007/s11356-019-06783-7.

55. NSAM № 520 AES/MS (2017). Determination of the elemental composition of natural, drinking, sewage and sea waters by atomic emission and mass spectral methods with inductively coupled plasma. Moscow, Russia.

56. Orlović-Leko P., Vidović K., Ciglenečki I., Omanović D., Sikirić M. and Šimunić I. (2020). Physico-chemical characterization of an urban rainwater (Zagreb, Croatia). Atmosphere, 11(2), 144, DOI: 10.3390/atmos11020144.

57. Ouyang W., Guo B., Cai G., Li Q., Han S., Liu B. and Liu X. (2015). The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Science of the Total Environment, 505, 306-314, DOI: 10.1016/j.scitotenv.2014.09.062.

58. Ouyang W., Xu Y., Cao J., Gao X., Gao B., Hao Z. and Lin C. (2019). Rainwater characteristics and interaction with atmospheric particle matter transportation analyzed by remote sensing around Beijing. Science of the Total Environment, 651, 532-540, DOI: 10.1016/j.scitotenv.2018.09.120.

59. Özsoy T. and Örnektekin S. (2009). Trace elements in urban and suburban rainfall, Mersin, Northeastern Mediterranean. Atmospheric Research, 94(2), 203-219, DOI: 10.1016/j.atmosres.2009.05.017.

60. Pan Y. and Wang Y. (2015). Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China. Atmospheric Chemistry and Physics, 15 (2), 951-972, DOI: 10.5194/acp-15-951-2015.

61. Pan Y.-P., Zhu X.-Y., Tian S.-L., Wang L.-L., Zhang G.-Z., Zhou Y.-B., Xu P., Hu B. and Wang Y.-S. (2017). Wet deposition and scavenging ratio of air pollutants during an extreme rainstorm in the North China Plain. Atmospheric and Oceanic Science Letters, 10(5), 348-353, DOI: 10.1080/16742834.2017.1343084.

62. Pant P. and Harrison R. (2013). Estimation of the contribution of road traffic emissions to particulate matter concentrations from field measurements: A review. Atmospheric Environment, 77, 78-97, DOI: 10.1016/j.atmosenv.2013.04.028.

63. Park H., Byun M., Kim T., Kim J.-J., Ryu J.-S., Yang M. and Choi W. (2020). The washing effect of precipitation on PM10 in the atmosphere and rainwater quality based on rainfall intensity. Korean Journal of Remote Sensing, 36(6-3), 1669-1679, DOI: 10.7780/kjrs.2020.

64. Park S.-M., Seo B.-K., Lee G., Kahng S.-H. and Jang Y. (2015). Chemical composition of water soluble inorganic species in precipitation at Shihwa basin, Korea. Atmosphere, 6(6), 732-750, DOI: 10.3390/atmos6060732.

65. Polyakova O., Artaev V. and Lebedev А. (2018). Priority and emerging pollutants in the Moscow rain. Science of the Total Environment, 645, 1126-1134, DOI: 10.1016/j.scitotenv.2018.07.215.

66. Popovicheva O., Ivanov A. and Vojtisek M. (2020a). Functional factors of biomass burning contribution to spring aerosol composition in a Megacity: Combined FTIR-PCA analyses. Atmosphere. 11 (4), 319, DOI: 10.3390/atmos11040319.

67. Popovicheva O., Volpert E., Sitnikov N., Chichaeva M. and Padoan S. (2020b). Black carbon in spring aerosols of Moscow urban background. Geography, Environment, Sustainability. 13 (1), 233–243, DOI: 10.24057/2071-9388-2019-90.

68. R Human health risk assessment from environmental chemicals (2004). Moscow, Russia: Federal Center for State Sanitary and Epidemiological Supervision of the Ministry of Health of Russia.

69. Ramírez O., da Boit K., Blanco E. and Silva L. (2020). Hazardous thoracic and ultrafine particles from road dust in a Caribbean industrial city. Urban Climate. 33, 100655, DOI: 10.1016/j.uclim.2020.100655.

70. Rudnick R. and Gao S. (2014). Composition of the Continental Crust, in Treatise on Geochemistry, Elsevier, 1-51, DOI: 10.1016/B978-0-08095975-7.00301-6.

71. Sakata M., Marumoto K., Narukawa M. and Asakura K. (2006). Regional variations in wet and dry deposition fluxes of trace elements in Japan. Atmospheric Environment, 40(3), 521-531, DOI: 10.1016/j.atmosenv.2005.09.066.

72. Samsonov Y., Ivanov V., McRae D. and Baker S. (2012). Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia. International Journal of Wildland Fire, 21(7), 818, DOI: 10.1071/WF11038.

73. Schiff K., Tiefenthaler L., Bay S. and Greenstein D. (2016). Effects of rainfall intensity and duration on the first flush from parking lots. Water, 8(8), 320, DOI: 10.3390/w8080320.

74. Seleznev A., Yarmoshenko I. and Malinovsky G. (2020). Urban geochemical changes and pollution with potentially harmful elements in seven Russian cities. Scientific Reports, 10(1), 1668, DOI: 10.1038/s41598-020-58434-4.

75. Semenets E., Svistov P. and Talash A. (2017). Chemical composition of atmospheric precipitation in Russian Subarctic. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 328(3), 27-36.

76. Shen Z., Liu J., Aini G. and Gong Y. (2016). A comparative study of the grain-size distribution of surface dust and stormwater runoff quality on typical urban roads and roofs in Beijing, China. Environmental Science and Pollution Research, 23(3), 2693-2704, DOI: 10.1007/s11356-0155512-5.

77. Singh S., Elumalai S. and Pal A. (2016). Rain pH estimation based on the particulate matter pollutants and wet deposition study. Science of the Total Environment. 563–564, 293–301, DOI: 10.1016/j.scitotenv.2016.04.066.

78. Song F. and Gao Y. (2009). Chemical characteristics of precipitation at metropolitan Newark in the US East Coast. Atmospheric Environment. 43 (32), 4903–4913, DOI: 10.1016/j.atmosenv.2009.07.024.

79. Song F. and Gao Y. (2011). Size distributions of trace elements associated with ambient particular matter in the affinity of a major highway in the New Jersey–New York metropolitan area. Atmospheric Environment, 45(37), 6714-6723, DOI: 10.1016/j.atmosenv.2011.08.031.

80. Svistov P., Pershina N., Pavlova M., Polishchuk A. and Semenets E. (2017). Chemical composition of Russian Arctic precipitation in 20072015. Russian Meteorology and Hydrology. 2017, 42(5), 314-318, DOI: 10.3103/S1068373917050065.

81. Talovskaya A., Yazikov E., Filimonenko E., Lata J.-C., Kim J. and Shakhova T. (2018). Characterization of solid airborne particles deposited in snow in the vicinity of urban fossil fuel thermal power plant (Western Siberia). Environmental Technology, 39(18), 2288-2303, DOI:10.1080/09593330.2017.1354075.

82. Talovskaya A., Yazikov E., Osipova N., Lyapina E., Litay V., Metreveli G. and Kim J. (2019). Mercury pollution in snow cover around thermal power plants in cities (Omsk, Kemerovo, Tomsk Regions, Russia). Geography, Environment, Sustainability, 12(4), 132-147, DOI: 10.24057/20719388-2019-58.

83. Tian X., Ye A., He Q., Wang Z., Guo L., Chen L., Liu M. and Wang Y. (2020). A three-year investigation of metals in the atmospheric wet deposition of a basin region, north China: Pollution characteristics and source apportionment. Atmospheric Pollution Research, 11(4), 793802, DOI: 10.1016/j.apr.2020.01.007.

84. Udachin V., Djedzhi M., Aminov P., Lonshakova G., Filippova K., Deryagin V. and Udachina L. (2010). Chemical composition of atmospheric precipitates of the South Urals. Estestvennie i Tekhnicheskie Nauki, 6, 304-311.

85. U.S. Borax (2020). Boron in industrial fluids and lubricants. [online] Available at: [Accessed 22 September 2020].

86. U.S. EPA (2020). RAIS. The Risk Assessment Information System. [online] Available at: [Accessed 23 September 2020].

87. Vlasov D., Kasimov N., Eremina I., Shinkareva G. and Chubarova N. (2021a). Partitioning and solubilities of metals and metalloids in spring rains in Moscow megacity. Atmospheric Pollution Research. 2021. Vol. 12. Iss. 1. P. 255-271. DOI: 10.1016/j.apr.2020.09.012

88. Vlasov D., Kasimov N., and Kosheleva N. (2015). Geochemistry of the road dust in the Eastern district of Moscow. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 1, 23-33.

89. Vlasov D., Kosheleva N. and Kasimov N. (2021b). Spatial distribution and sources of potentially toxic elements in road dust and its PM10 fraction of Moscow megacity. Science of the Total Environment, 761, 143267, DOI: 10.1016/j.scitotenv.2020.143267.

90. Vlasov D., Vasil’chuk J., Kosheleva N. and Kasimov N. (2020). Dissolved and suspended forms of metals and metalloids in snow cover of megacity: Partitioning and deposition rates in Western Moscow. Atmosphere, 11(9), 907, DOI: 10.3390/atmos11090907.

91. Vlastos D., Antonopoulou M., Lavranou A., Efthimiou I., Dailianis S., Hela D., Lambropoulou D., Paschalidou A. and Kassomenos P. (2019). Assessment of the toxic potential of rainwater precipitation: First evidence from a case study in three Greek cities. Science of the Total Environment, 648, 1323-1332, DOI: 10.1016/j.scitotenv.2018.08.166.

92. Weather maps. The World in weather charts (2020). Weather maps. [online] Available at: [Accessed 23 September 2020].

93. Wu Y., Zhang J., Ni Z., Liu S., Jiang Z. and Huang X. (2018). Atmospheric deposition of trace elements to Daya Bay, South China Sea: Fluxes and sources. Marine Pollution Bulletin, 127, 672-683, DOI: 10.1016/j.marpolbul.2017.12.046.

94. Yanchenko N. and Yaskina O. (2014). Features of chemical composition of snow cover and precipitation in Bratsk. Bulletin of the Tomsk Polytechnic University. Geo Аssets Engineering, 324, 27-35.

95. Yeremina I., Chubarova N., Alexeeva L. and Surkova G. (2014). Acidity and chemical composition of summer precipitation within the Moscow region. Vestnik Moskovskogo Unviersiteta, Seriya Geografiya, 5(5), 3-11.

96. Yu J., Yan C., Liu Y., Li X., Zhou T. and Zheng M. (2018). Potassium: a tracer for biomass burning in Beijing? Aerosol and Air Quality Research, 18(9), 2447-2459, DOI: 10.4209/aaqr.2017.11.0536.

97. Zheng J., Zhan C., Yao R., Zhang J., Liu H., Liu T., Xiao W., Liu X. and Cao J. (2018). Levels, sources, markers and health risks of heavy metals in PM2.5 over a typical mining and metallurgical city of Central China. Aerosol Science and Engineering, 2(1), 1-10, DOI: 10.1007/s41810-0170018-9.


For citations:

Vlasov D.V., Eremina I.D., Shinkareva G.L., Chubarova N.E., Kasimov N.S. Daily Variations In Wet Deposition And Washout Rates Of Potentially Toxic Elements In Moscow During Spring Season. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(1):219-233.

Views: 800

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)