Advanced search

Reconstruction Of Oil Spill Trajectory In The Java Sea, Indonesia Using Sar Imagery

Full Text:


Oil spill phenomena in the ocean possess a very serious threat to ocean health. On the ocean surface, oil slicks immediately start to spread and mostly end up in the ecosystem. Furthermore, it could threaten the organisms living in the ocean or impact nearby coastal area. The aim of this research was to investigate the trajectories of oil spill based on a real accident in the Java Sea. Tracking oil spills using satellite images is an efficient method that provides valuable information about trajectories, locations and the spread intensity. The objective of this study was to periodically track the trajectory of the oil spill from the Karawang incident using Sentinel-1 Synthetic Aperture Radar (SAR) images. Pre-processing of the images consisted of radiometric and geometric corrections. After the corrections, SAR images were mapped and plotted accordingly. To understand the oil spill trajectories in relation to the oceanic processes, the ocean current pattern map and surface wind roses were also analysed. The processed images from July to October 2019 show a trajectory dominated by the oil spill layers movement towards the west to northwest from the original location along with a decrease in the detected oil spill area over time. The identified trajectories of the oil spill followed the ocean current pattern and surface winds. Thus, these two parameters were considered to be the main factors responsible for the oil spill drift.

About the Authors

Amarif Abimanyu
Universitas Padjadjaran

KOMITMEN Research Group

West Java, 45363

Widodo S. Pranowo
Marine Research Center, Indonesian Ministry of MarineAffairs & Fisheries; Indonesian Naval Postgraduate School (STTAL)

Marine and Coastal Data Laboratory

Pasir Putih II, East Ancol, Jakarta UBR 14430

Department of Hydrography

Ibnu Faizal
Universitas Padjadjaran

Department of Marine

West Java, 45363

Najma K. A. Afandi
Universitas Padjadjaran

KOMITMEN Research Group

West Java, 45363

Noir P. Purba
Universitas Padjadjaran

Department of Marine

West Java, 45363


1. Aguilera F., Méndez J., Pásaro E. and Laffon B. (2010). Review on the effects of exposure to spilled oils on human health. Journal of Applied Toxicology, 30(4), 291-301, DOI: 10.1002/jat.1521.

2. Akkartal A. and Sunar F. (2008). The usage of radar images in oil spill detection. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVII (B8), 271-276.

3. Almeda R., Wambaugh Z., Chai C., Wang Z., Liu Z. and Buskey E.J. (2013). Effects of Crude Oil Exposure on bioaccumulation of polycyclic aromatic hydrocarbons and survival of adult and larval stages of gelatinous zooplankton. PLOS One, 8(10), e74476, DOI: 10.1371/journal.pone.0074476.

4. Barron M.G. (2012). Ecological Impacts of the Deepwater Horizon Oil Spill: Implications for Immunotoxicity. Toxicologic Pathology, 40(2), 315-320, DOI: 10.1177/0192623311428474.

5. Bayramov E., Kada M. and Buchroithner M. (2018). Monitoring oil spill hotspots, contamination probability modelling and assessment of coastal impacts in the Caspian Sea using SENTINEL-1, LANDSAT-8, RADARSAT, ENVISAT and ERS satellite sensors. Journal of Operational Oceanography, 11(1), 27-43, DOI: 10.1080/1755876X.2018.1438343.

6. Brekke C. and Solberg A.H.S. (2005). Oil spill detection by satellite remote sensing. Remote Sensing of Environment, 95(1), 1-13, DOI: 10.1016/j.rse.2004.11.015.

7. Burns K.A., Garrity S.D. and Levings S.C. (1993). How many years until mangrove ecosystems recover from catastrophic oil spills? Marine Pollution Bulletin, 26(5), 239-248, DOI: 10.1016/0025-326X(93)90062-O.

8. Carls M.G., Babcock M.M., Harris P.M., Irvine G.V., Cusick J.A. and Rice SD (2001). Persistence of oiling in mussel beds after the Exxon Valdez oil spill. Marine Environmental Research, 51(2), 167-190, DOI: 10.1016/s0141-1136(00)00103-3.

9. Chang C.P., Wang Z., McBride J. and Liu C.H. (2005). Annual cycle of Southeast Asia–Maritime Continent rainfall and asymmetric monsoon transition. Journal of Climate, 18, 287-301, DOI: 10.1175/JCLI-3257.1.

10. Chang S.E., Stone J., Demes K. and Piscitelli M. (2014). Consequences of oil spills: a review and framework for informing planning. Ecology and Society, 19(2), 26, DOI: 10.5751/ES-06406-190226.

11. Chaturvedi S.K., Banerjee S. and Lele S. (2019). An assessment of oil spill detection using Sentinel 1 SAR-C images, Journal of Ocean Engineering and Science, DOI: 10.1016/j.joes.2019.09.004.

12. Daily Update Sumur YYA-1. (n.d.). Retrieved from

13. Daling P.S. & StrØm T. (1999). Weathering of oils at sea: Model/field data comparisons. Spill Science and Technology Bulletin, 5(1), 63-74, DOI: 10.1016/S1353-2561(98)00051-6.

14. Daruwedho H., Sasmito B. and Amarohman F.J. (2016). Analisis Pola Arus Laut Permukaan Perairan Indonesia Dengan Menggunakan Satelit Altimetri Jason-2 Tahun 2010–2014. Jurnal Geodesi Undip, 5(2), 145-158 [in Indonesian].

15. Espedal H. (1999). Detection of oil spill and natural film in the marine environment by space-borne SAR. In Geoscience and Remote Sensing Symposium, 1999. Proceedings of IGARSS’99. IEEE 1999 International, 3, 1478-1480, DOI: 10.1109/IGARSS.1999.771993.

16. Filipponi F. (2019). Sentinel-1 GRD pre-processing workflow. The 3rd International Electronic Conference on Remote Sensing, Proceedings MDPI, 18(11), 1-4, DOI: 10.3390/ECRS-3-06201.

17. Fingas M.F. and Brown C.E. (1997). Review of oil spill remote sensing, Spill Science & Technology Bulletin, 4(4), 199-208, DOI: 10.3390%2Fs18010091.

18. Fiscella B., Giancaspro A., Nirchio F., Pavese P. and Trivero P. (2000). Oil spill detection using marine SAR images. International Journal of Remote Sensing, 21(18), 3561-3566, DOI: 10.1080/014311600750037589.

19. Galt J. (1994). Trajectory analysis for oil spills. Journal of Advanced Marine Technology Conference, 11, 91-126.

20. Harahsheh H.A. (2016). Oil spill detection and monitoring of Abu Dhabi coastal zone using Kompsat-5 SAR Imagery. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XLI-B8, 2016 XXIII ISPRS Congress, 12-19 July 2016, Prague, Czech Republic, 1-7, DOI: 10.5194/isprs-archives-XLI-B8-1115-2016.

21. Hermawan D., Silalahi S. and Eidman H.M. (1993). The study of nesting habitat of hawksbill turtle (Eretmochelys imbricata L) in Peteloran Timur and Peteloran Sarat Islands, Marine National Park of Seribu Islands, Jakarta. Jurnal Ilmu-ilmu Perairan and Perikanan Indonesia, 1(1), 33-37. [in Indonesian]

22. Hung C.W., Liu X. and Yanai M. (2004). Symmetry and asymmetry of the Asian and Australian summer monsoons. Journal of Climate, 17, 2413-2426, DOI: 10.1175/1520-0442(2004)017%3C2413:SAAOTA%3E2.0.CO;2

23. Incardona J.P., Collier T.K. and Scholz N.L. (2011). Oil spills and fish health: exposing the heart of matter. Journal of Exposure Science and Environmental Epidemiology, 21, 3-4, DOI: 10.1038/jes.2010.51.

24. Ivanov A.Y. (2011). Remote Sensing of Oil Films in the Context of Global Changes. Remote Sensing of the Changing Oceans, 169-191. DOI: 10.1007/978-3-642-16541-2_9.

25. Kingston P.F. (2002). Long-term environmental impact of oil spills. Spill Science and Technology Bulletin, 7(1-2), 53-61, DOI: 10.1016/S1353-2561(02)00051-8.

26. Kolokoussis P. and Karathanassi V. (2018). Oil spill detection and mapping using Sentinel 2 imagery. Journal of Marine Science and Engineering, 6(4), 1-12, DOI: 10.3390/jmse6010004.

27. Li C. and Yanai M. (1996). The onset and interannual variability of the Asian summer monsoon in relation to land–sea thermal contrast. Journal of Climate, 9, 358-375.

28. Loureiro M.L., Ribas A., Lopez E. and Ojea E. (2005). Estimated costs and admissible claims linked to the Prestige oil spill. Ecological Economics, 59, 48-63, DOI: 10.1016/j.ecolecon.2005.10.001.

29. Major D.N. and Wang H. (2012). How public health impact is addressed: a retrospective view on three different oil spills. Toxicological and Environmental Chemistry, 94, 442-467, DOI: 10.1080/02772248.2012.654633.

30. Mansir N. & Jones M. (2012). Environmental impacts of marine oil spill; a case study of Deepwater Horizon oil spill at the Gulf of Mexico United States of America 2010 (a review). Chemsearch Journal, 3(2), 64-70.

31. Osmanoglu B., Ozkan C., Sunar F. and Staples G. (2012). Automatic calculation of oil slick area from multiple saracquisitions for deepwater horizon oil spill. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XXXIX-B7, 2012 XXII ISPRS Congress, August 25 – September 01 2012, Melbourne, Australia, 63-66, DOI: 10.5194/isprsarchives-XXXIX-B7-63-2012.

32. Paine R.T., Ruesink J.T., Sun A., Soulanille E.L., Wonham M.J., Harley C.D.G., Brumbaugh D.R. and Secord D.L. (1996). Trouble on oiled waters: lessons from the Exxon Valdez oil spill. Annual Review of Ecology and Systematics, 27, 197-235, DOI: 10.1146/annurev.ecolsys.27.1.197.

33. PHE (Pertamina Hulu Energi) (2019). Daily Update Sumur YYA-1.

34. Prastyani R. and Basith A. (2018). Utilization of Sentinel-1 SAR imagery for oil spill mapping: A case study of Balikpapan Bay oil spill. Journal of Geospatial Information Science and Engineering, 1(1), 22-26, DOI: 10.22146/jgise.38533.

35. Purba N.P. and Pranowo W.S. (2015). Oceanographic dynamic, water mass and Circulation characteristic, UNPAD Press, Bandung, 50-75. Purwanto (2003). Status and management of the Java sea fisheries. WorldFish Center and Asian Development Bank.

36. Setyonugroho A., Damar A. and Nurjaya I.W. (2019). Kajian risiko penangulangan tumpahan minyak: studi kasus di Laut Jawa Bagian Barat. JPSL 9(3): 826-839, DOI: 10.29244/jpsl.9.3.826-839 [in Indonesian].

37. Shinn P., Austin C.P., Kavlock R.J. and Dix D.J. (2010). Analysis of eight oil spill dispersants using rapid, in vitro tests for endocrine and other biological activity. Environmental Science and Technology, 44, 5979-5985, DOI: 10.1021/es102150z.

38. Simanjorang J.E., Pranowo W.S., Sari L.P., Purba N.P. and Syamsuddin M.L. (2018). Building up the database of the Level-2 Java Sea Ecoregion based on physical oceanographic parameters. IOP Conf. Series: Earth and Environmental Science, 176, 012009.

39. Siregar S.N., Sari L.P., Purba N.P., Pranowo W.S. and Syamsuddin M.L. (2017). The water mass exchange in Java Sea due to periodicity of Monsoon and ITF in 2015. Depik Journal, 6(1), 44-55.

40. Siswanto and Suratno (2008). Seasonal pattern of wind-induced upwelling over Java – Bali Sea waters and surrounding area. International Journal of Remote Sensing Earth Science, 5, 46-56, DOI: 10.30536/j.ijreses.2008.v5.a1228.

41. Solberg A.H.S., Brekke C. and Husøy P.O. (2007). Oil spill detection in Radarsat and Envisat SAR Images. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 746-754, DOI: 10.1109/TGRS.2006.887019.

42. Sprintall J., Gordon A.L., Koch-Larrouy A., Lee T., Potemra J.T., Pujiana K. & Wijffels S.E. (2014). The Indonesian seas and their role in the coupled ocean-climate system. Nature Geoscience, 7(7), 487-492, DOI: 10.1038/ngeo2188.

43. Sulistyono (2013). Dampak Tumpahan Minyak (Oil Spill) di Perairan Laut Pada Kegiatan Industri Migas and Metode Penanggulangannya. Forum Teknol. 3(1): 49-57 [in Indonesian].

44. Suneel V., Rao V.T., Suresh G., Chaudhary A., Vethamony P. and Ratheesh R. (2019). Oil pollution in the Eastern Arabian Sea from invisible sources: A multi-technique approach. Marine Pollution Bulletin, 146, 683-695, DOI: 10.1016/j.marpolbul.2019.07.015.

45. Topouzelis K. and Singha S. (2017). Oil spill detection using space-borne Sentinel-1 SAR Imagery. Oil Spill Science and Technology (Second Edition), Gulf Professional Publishing, Oxford, 387-402, DOI: 10.1016/B978-0-12-809413-6.00006-0.


For citations:

Abimanyu A., Pranowo W.S., Faizal I., Afandi N.K., Purba N.P. Reconstruction Of Oil Spill Trajectory In The Java Sea, Indonesia Using Sar Imagery. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(1):177-184.

Views: 686

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)