Bioremediation Of Soil Of The Kola Peninsula (Murmansk Region) Contaminated With Diesel Fuel
https://doi.org/10.24057/2071-9388-2019-170
Abstract
This work focuses on the creation and use of associations of hydrocarbon-oxidizing microorganisms. Bioremediation of soils with the help of mixed cultural and associations of microorganisms provides wider adaptive possibilities than individual species. This is especially important in conditions of short northern summer. The results of field experiments showed that microbial associations based on indigenous microorganisms (bacteria Pseudomonas fluorescens, P. putida, P. baetica, Microbacterium paraoxydans and fungi Penicillium commune, P. canescens st. 1, P. simplicissimum st. 1) with mineral fertilizers reduced the content of total petroleum hydrocarbons in the Hortic Arthrosol soil of the Kola Peninsula by 82% over 120 days. Also, the microbial associations with mineral fertilizers had a positive effect on the physical properties of the soil, increasing its humidity. The bacterial-fungi associations changed the number, abundance and structure of the indigenous community of microorganisms. Penicillium canescens, which was included in the composition of fungi association, became dominant. During the rapid decomposition of hydrocarbons are released to the soil toxic intermediates or metabolites of the microbial oxidation of hydrocarbons. Hydrocarbon oxidizing microfungi suppressed the germination of test plant seeds to one degree or another. Penicillium commune fungal metabolites inhibited seed germination only by 29% for Lepidium sativum L. and 24% for Triticum aestivum L. This species can be used for bioremediation of petroleum contaminated soils.
About the Authors
Maria V. KorneykovaRussian Federation
14A Akademgorodok, 184209, Apatity
6 Miklukho-Maklaya St, 117198, Moscow
Vladimir A. Myazin
Russian Federation
14A Akademgorodok, 184209, Apatity
Nadezhda V. Fokina
Russian Federation
14A Akademgorodok, 184209, Apatity
Alexandra A. Chaporgina
Russian Federation
14A Akademgorodok, 184209, Apatity
References
1. Adams G., Fufeyin P., Okoro S. and Ehinomen I. (2015). Bioremediation, biostimulation and bioaugmention: a review. Int. J. Environ. J. Biorem. Biodegrad., 3(1), 28-39. https://doi.org/10.12691/ijebb-3-1-5
2. April T., Foght J. and Currah R. (2000). Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can. J. Microbiol, 46(1), 38–49. https://doi.org/10.1139/w99-117
3. Bilaj V. and Koval E. (1980). The Growth of Fungi on Petroleum Hydrocarbons. Naukova Dumka, Kiev. (in Russian)
4. Cerniglia C. and Sutherland T. (2001). Bioremediation of polycyclic aromatic hydrocarbons by ligninolytic and non-ligninolytic fungi. In: Fungi in Bioremediation. London, 136-187. https://doi.org/10.1017/CBO9780511541780.008
5. Das N. and Chandran P. (2011). Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol. Res. Int., 1-13. https://doi.org/10.4061/2011/941810
6. Domsch K., Gams W. and Anderson T. (2007). Compendium of Soil Fungi. 2nd ed. IHW Verlag, Eching.
7. Drugov Yu., Rodin A. (2007). Environmental Analysis for Oil Spills and Oil Products: Practical Manual. BINOM Laboratoriya Znanii, Moscow (in Russian).
8. Evdokimova G., Korneykova M. and Myazin V. (2013). Dynamics of gas condensate removal from an Al–Fe-humus podzol and its effect on the complexes of soil fungi. Eurasian Soil Sci., 46(3), 310-316. https://doi.org/10.1134/S1064229313030034
9. Field J., de Jong E., Feijoo Costa G. and de Bont J.A. (1992). Biodegradation of polycyclic aromatic hydrocarbons by new isolates of white rot fungi. Environ. Microbiol., 58(7), 2219-2226.
10. Ghazali F., Rahman R., Salleh A. and Basri M. (2004). Biodegradation of hydrocarbons in soil by microbial consortium. Int. Biodeterior. Biodegrad., 54(1), 61-67. https://doi.org/10.1016/j.ibiod.2004.02.002
11. Glyaznetsova Yu. and Zueva I. (2013). Bioremediation of contaminated soils in the North. Mezhd. Zh. Prikl. Fundam. Issled., 8(2), 214-216 (in Russian).
12. Grotenhuis T., Fied L., Wasseveld R. and Rulkens W. (1998). Biodegradation of polyaromatic hydrocarbons (PAH) in polluted soil by the white-rot fungus Bjerkandera. Chem. Technol. Biotechnol., 71(4), 359-360. https://doi.org/10.1002/(SICI)1097-4660(199804)71:4<359::AID-JCTB840>3.0.CO;2-Y
13. Heath J. (1993). Review of chemical, physical and toxicological properties of components of total petroleum hydrocarbons. Soil Contam., 2, 548-611. https://doi.org/10.1080/15320389309383426
14. Joo H., Ndegwa P., Shoda M. and Phae Ch. (2008). Bioremediation of oil-contaminated soil using Candida catenulate and food waste. Environ. Pollut., 156(3), 891-896. https://doi.org/10.1016/j.envpol.2008.05.026
15. Khabibullina F. and Ibatullina I. (2011). Transformation micromycetes community in peat-gley soils of the Far North at oil contamination. Teor. Prikl. Ekol., 3, 76-86. (in Russian).
16. Kireeva N., Miftakhova A., Bakaeva M. and Vodopyanov V. (2005). Complexes of Soil Micromycetes in Technogenesis. Gilem, Ufa (in Russian).
17. Kireеva N., Grigoriadi A. and Khaibullina E. (2009). Association of hydrocarbon oxidizing microorganisms for bioremediation of oil contaminated soils. Vestn. Bashkir. Gos. Univ., 14(2), 391-394 (in Russian).
18. Klich M. (2002). Identification of Common Aspergillus Species. Centraalbureau voor Shimmelcultures, Utrecht.
19. Korneykova M., Chaporgina A. and Redkina V. (2019). Oil Destructive Activity of Fungi Isolated from the Soils of the Kola Peninsula. Ed. Vasenev V., Dovletyarova E., Cheng Z., Prokofieva T., Morel J., Ananyeva N. Urbanization: Challenge and Opportunity for Soil Functions and Ecosystem Services. Proceedings of the 9th Suitma Congress. Springer, 123-134. https://doi.org/10.1007/978-3-319-89602-1_16
20. Korneykova M., Myazin V., Ivanova L., Fokina N., Redkina V. (2019) Development And Optimization Of Biological Treatment Of Quarry Waters From Mineral Nitrogen In The Subarctic. Geography, Environment, Sustainability. 12(2), 97-105. https://doi.org/10.24057/2071-93882019-5
21. Koronelli T. (1996). Principles and methods for raising the efficiency of biological degradation of hydrocarbons in the environment: review. Appl. Biochem. Microbiol., 32(6), 519-525.
22. McGill W. (1977). Soil restoration following oil spills—a review. Petrol. Technol., 16(2), 60-67. https://doi.org/10.2118/77-02-07
23. Myazin V. and Evdokimova G. (2012). The biological activity of the soil of the northern polar regions when oil pollution. Inzh. Ekol., 1, 17-23 (in Russian).
24. Pinedo-Rivilla C., Aleu J. and Collado I. (2009). Pollutants biodegradation by fungi. Curr. Org. Chem., 13(12), 1194-1214. https://doi.org/10.2174/138527209788921774
25. Raper K. and Thom C. (1949). Manuel of the Penicillia. Heffner Publishing, New York.
26. Samson R., Houbraken J., Thrane U., Frisvard J. and Andersen B. (2010). Food and Indoor Fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht.
27. Seifert K., Morgan-Jones G., Gams W. and Kendrick B. (2011). The Genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht.
28. Tigini V., Prigione V., Di Toro S., Fava F. and Varese G. (2009). Isolation and characterization of polychlorinated biphenyl (PCB) degrading fungi from a historically contaminated soil. Microb. Cell Fact., 8(5), 1-14. https://doi.org/10.1186/1475-2859-8-5 http://www.speciesfungorum.org.
Review
For citations:
Korneykova M.V., Myazin V.A., Fokina N.V., Chaporgina A.A. Bioremediation Of Soil Of The Kola Peninsula (Murmansk Region) Contaminated With Diesel Fuel. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(1):171-176. https://doi.org/10.24057/2071-9388-2019-170