Advanced search

Assessing City Greenness using Tree Canopy Cover: The Case of Yogyakarta, Indonesia

Full Text:


The study aims to measure the greenness of an Indonesia city using tree canopy cover data. Rapid physical development brings impacts to the loss of urban trees, which leads to the increase of flooding risk, local temperature and pollution level. To address the issues, a baseline assessment of urban tree canopy existence is necessary as inputs for effective urban environmental management policies. The methods used in this research include 1) remote sensing and spatial analysis, and 2) simple quantitative analysis. Furthermore, three indicators are used in assessing the greenness, including 1) size of the canopy, 2) canopy cover percentage, and 3) canopy per capita. The results found that the city of Yogyakarta has a low level of greenness based on the canopy size in which covers only 467.37 ha or 14.38% of the total area. The second finding is Yogyakarta has an unequal distribution of canopy cover percentage in each district (kecamatan). The third finding is Yogyakarta City has a canopy per capita rate of 10.93 sq m/person. This number is below the UN recommendation of 15sq m / person. It indicates that residents have poor access to urban greenery. Additionally, the article discusses that the three indicators used have strength and weakness in measuring the level of greenness. Therefore, the assessment objectives must be taken into account. We recommend the use of each indicator as follows: 1) the canopy size is used as an initial inventory of the existence and distribution of the canopy, 2) the canopy cover percentage canopy percentage for measuring and comparing the level of greenness spatially and visually between areas, 3) the canopy per capita is used to measure the possibility of access and interaction of residents with the presence of a tree canopy. Cities’ authority can use the information to measure the achievement of SDGs number 11, 13, or 15.

About the Authors

Rendy Bayu Aditya
Universitas Gadjah Mada

Urban and Regional Planning Program, Architecture and Planning, Faculty of Engineering


Muhammad Ulul Lizamun Ningam
Universitas Gadjah Mada

Urban and Regional Planning Program, Architecture and Planning, Faculty of Engineering



1. Ali S.B. & Patnaik S. (2019). Assessment of the impact of urban tree canopy on microclimate in Bhopal: A devised low-cost traverse methodology. Urban Climate, 27, 430-445, DOI: 10.1016/j.uclim.2019.01.004.

2. Aronson M.F.J., Lepczyk C.A., Evans K.L., Goddard M.A., Lerman S.B., MacIvor J.S. … Vargo T. (2017). Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment, 15(4), 189-196, DOI: 10.1002/fee.1480.

3. Bayulken B., Huisingh D. & Fisher P.M.J. (2021). How are nature based solutions helping in the greening of cities in the context of crises such as climate change and pandemics? A comprehensive review. Journal of Cleaner Production, 288, 125569, DOI: 10.1016/j.jclepro.2020.125569.

4. Bravo-Bello J.C., Martinez-Trinidad T., Valdez-Lazalde J.R., Romero-Sanchez M.E. & Martinez-Trinidad S. (2020). Analyzing Potential TreePlanting Sites and Tree Coverage in Mexico City Using Satellite Imagery. Forests, 11(4), 423, DOI: 10.3390/f11040423.

5. Brunner J. & Cozens P. (2013). ‘Where Have All the Trees Gone?’ Urban Consolidation and the Demise of Urban Vegetation: A Case Study from Western Australia. Planning Practice and Research, 28(2), 231-255, DOI: 10.1080/02697459.2012.733525.

6. Campagnaro T., Sitzia T., Cambria V.E. & Semenzato P. (2019). Indicators for the Planning and Management of Urban Green Spaces: A Focus on Public Areas in Padua, Italy. Sustainability, 11(24), 7071, DOI: 10.3390/su11247071.

7. Chen X., Zhao P., Hu Y., Ouyang L., Zhu L. & Ni G. (2019). Canopy transpiration and its cooling effect of three urban tree species in a subtropical city – Guangzhou, China. Urban Forestry and Urban Greening, 43(November 2018), 126368, DOI: 10.1016/j.ufug.2019.126368.

8. Chen Y. & Borelli S. (2016). Towards a Greener, Healthier, and Happier Future. The 1st Asia-Pacific Urban Forestry Meeting. Retrieved from

9. City of Melbourne (2012). Urban Forest Strategy: Making a great city greener 2012–2032.

10. Conway T.M. (2016). Tending their urban forest: Residents’ motivations for tree planting and removal. Urban Forestry and Urban Greening, 17, 23-32, DOI: 10.1016/j.ufug.2016.03.008.

11. Davey Resource Group (2015). City of Pacific Grove Urban Tree Canopy Assessment.

12. Davis K.L. & Jones R.E. (2014). Modeling Environmental Concern for Urban Tree Protection Using Biophysical and Social Psychological Indicators. Society and Natural Resources, 27(4), 372-388, DOI: 10.1080/08941920.2013.861555.

13. Davison G. (2005). Urban forest rehabilitation – A case study from Singapore. Keep Asia Green: Volume I, South East Asia, (Corner 1978), 171-181.

14. Drillet Z., Fung T.K., Leong R.A.T., Sachidhanandam U., Edwards P. & Richards D. (2020). Urban vegetation types are not perceived equally in providing ecosystem services and disservices. Sustainability (Switzerland), 12(5), DOI: 10.3390/su12052076.

15. Ellis E.A. & Mathews A.J. (2019). Object-based delineation of urban tree canopy: assessing change in Oklahoma City, 2006–2013. Computers, Environment and Urban Systems, 73(August 2018), 85-94, DOI: 10.1016/j.compenvurbsys.2018.08.006.

16. Elmes A., Rogan J., Williams C., Ratick S., Nowak, D., & Martin, D. (2017). Effects of urban tree canopy loss on land surface temperature magnitude and timing. ISPRS Journal of Photogrammetry and Remote Sensing, 128, 338-353, DOI: 10.1016/j.isprsjprs.2017.04.011.

17. Farrugia S., Hudson M.D. & McCulloch L. (2013). An evaluation of flood control and urban cooling ecosystem services delivered by urban green infrastructure. International Journal of Biodiversity Science, Ecosystem Services and Management, 9(2), 136-145, DOI: 10.1080/21513732.2013.782342.

18. Ferranti E.J.S., MacKenzie A.R., Ashworth K. & Hewitt C.N. (2019). First Steps in Air Quality for Built Environment Practitioners. Retrieved from

19. Fineschi S. & Loreto F. (2020). A Survey of Multiple Interactions Between Plants and the Urban Environment. Frontiers in Forests and Global Change, 3(March), 1-19, DOI: 10.3389/ffgc.2020.00030.

20. Frantzeskaki N. (2019). Seven lessons for planning nature-based solutions in cities. Environmental Science and Policy, 93, 101-111, DOI: 10.1016/j.envsci.2018.12.033.

21. Godinho S., Guiomar N. & Gil A. (2018). Estimating tree canopy cover percentage in a mediterranean silvopastoral systems using Sentinel-2A imagery and the stochastic gradient boosting algorithm. International Journal of Remote Sensing, 39(14), 4640-4662, DOI: 10.1080/01431161.2017.1399480.

22. Greene C.S., Robinson P.J. & Millward A.A. (2018). Canopy of advantage: Who benefits most from city trees? Journal of Environmental Management, 208, 24-35, DOI: 10.1016/j.jenvman.2017.12.015.

23. Guo T., Morgenroth J. & Conway T. (2018). Redeveloping the urban forest: The effect of redevelopment and property-scale variables on tree removal and retention. Urban Forestry and Urban Greening, 35(August), 192-201, DOI: 10.1016/j.ufug.2018.08.012.

24. Guo T., Morgenroth J., Conway T. & Xu C. (2019). City-wide canopy cover decline due to residential property redevelopment in Christchurch, New Zealand. Science of the Total Environment, 681, 202-210, DOI: 10.1016/j.scitotenv.2019.05.122.

25. Hilbert D.R., Koeser A.K., Roman L.A., Hamilton K., Landry S.M., Hauer R.J. … Perez H. (2019). Development practices and ordinances predict inter-city variation in Florida urban tree canopy coverage. Landscape and Urban Planning, 190 (December 2018), 103603, DOI: 10.1016/j.landurbplan.2019.103603.

26. Hostetler A.E., Rogan J., Martin D., Delauer V. & Oneil-Dunne J. (2013). Characterizing tree canopy loss using multi-source gis data in central Massachusetts, USA. Remote Sensing Letters, 4(12), 1137–1146, DOI: 10.1080/2150704X.2013.852704.

27. Husna V.N., Fawzi N.I. & Nur I.A. (2018). Measuring and mitigating urban heat Island in Yogyakarta City using remote sensing. International Journal of Scientific and Technology Research, 7(7), 57-60.

28. Intasen M., Hauer R.J., Werner L.P. & Larsen E. (2017). Urban forest assessment in Bangkok, Thailand. Journal of Sustainable Forestry, 36(2), 148-163, DOI: 10.1080/10549811.2016.1265455.

29. Lavy B.L. & Hagelman R.R. (2017). Spatial and Temporal Patterns Associated with Permitted Tree Removal in Austin, Texas, 2002–2011. Professional Geographer, 69(4), 539-552, DOI: 10.1080/00330124.2016.1266953.

30. Lavy B.L. & Hagelman R.R. (2019). Protecting the urban forest: Variations in standards and sustainability dimensions of municipal tree preservation ordinances. Urban Forestry & Urban Greening, 44 (May), 126394, DOI: 10.1016/j.ufug.2019.126394.

31. Li X., Zhang C., Li W., Ricard R., Meng Q. & Zhang W. (2015). Assessing street-level urban greenery using Google Street View and a modified green view index. Urban Forestry and Urban Greening, 14(3), 675-685, DOI: 10.1016/j.ufug.2015.06.006.

32. Liu L. & Jensen M.B. (2018). Green infrastructure for sustainable urban water management: Practices of five forerunner cities. Cities, 74 (November 2017), 126-133, DOI: 10.1016/j.cities.2017.11.013.

33. Martin N.A., Chappelka A.H., Loewenstein E.F. & Keever G.J. (2012). Comparison of carbon storage, carbon sequestration, and air pollution removal by protected and maintained urban forests in Alabama, USA. International Journal of Biodiversity Science, Ecosystem Services and Management, 8(3), 265-272, DOI: 10.1080/21513732.2012.712550.

34. McGee J.A., Day S.D., Wynne R.H. & White M.B. (2012). Using Geospatial Tools to Assess the Urban Tree Canopy: Decision Support for Local Governments. Journal of Forestry, 110(5), 275-286, DOI: 10.5849/jof.11-052.

35. McGovern M. & Pasher J. (2016). Canadian urban tree canopy cover and carbon sequestration status and change 1990–2012. Urban Forestry and Urban Greening, 20, 227-232, DOI: 10.1016/j.ufug.2016.09.002.

36. Morgenroth J., O’Neil-Dunne J. & Apiolaza L.A. (2017). Redevelopment and the urban forest: A study of tree removal and retention during demolition activities. Applied Geography, 82, 1-10, DOI: 10.1016/j.apgeog.2017.02.011.

37. Norton B.A., Coutts A.M., Livesley S.J., Harris R.J., Hunter A.M. & Williams N.S.G. (2015). Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape and Urban Planning, 134, 127-138, DOI: 10.1016/j.landurbplan.2014.10.018.

38. Nowak D.J. & Greenfield E.J. (2018). Declining urban and community tree cover in the United States. Urban Forestry and Urban Greening, 32(November 2017), 32-55, DOI: 10.1016/j.ufug.2018.03.006.

39. Nowak D.J., Greenfield E.J., Hoehn R.E. & Lapoint E. (2013). Carbon storage and sequestration by trees in urban and community areas of the United States. Environmental Pollution, 178, 229-236, DOI: 10.1016/j.envpol.2013.03.019.

40. Ossola A. & Hopton M.E. (2018). Measuring urban tree loss dynamics across residential landscapes. Science of the Total Environment, 612, 940-949, DOI: 10.1016/j.scitotenv.2017.08.103.

41. Papastavrou V. (2019). Community engagement in urban tree management decisions: the Bristol case study. Arboricultural Journal, 41(2), 91-104, DOI: 10.1080/03071375.2019.1589173.

42. Pappalardo V., La Rosa D., Campisano A. & La Greca P. (2017). The potential of green infrastructure application in urban runoff control for land use planning: A preliminary evaluation from a southern Italy case study. Ecosystem Services, 26(June 2016), 345-354, DOI: 10.1016/j.ecoser.2017.04.015.

43. Parmehr E.G., Amati M., Taylor E.J. & Livesley S.J. (2016). Estimation of urban tree canopy cover using random point sampling and remote sensing methods. Urban Forestry and Urban Greening, 20, 160-171, DOI: 10.1016/j.ufug.2016.08.011.

44. Petri A.C., Wilson B. & Koeser A. (2019). Planning the urban forest: Adding microclimate simulation to the planner’s toolkit. Land Use Policy, 88 (August), 104117, DOI: 10.1016/j.landusepol.2019.104117.

45. Phelan K., Hurley J. & Bush J. (2019). Land-Use Planning’s Role in Urban Forest Strategies: Recent Local Government Approaches in Australia. Urban Policy and Research, 37(2), 215-226, DOI: 10.1080/08111146.2018.1518813.

46. Ramdhoni S., Rushayati S.B. & Prasetyo L.B. (2016). Open Green Space Development Priority Based on Distribution of air Temperature Change in Capital City of Indonesia, Jakarta. Procedia Environmental Sciences, 33, 204-213, DOI: 10.1016/j.proenv.2016.03.071.

47. Riley C.B. & Gardiner M.M. (2020). Examining the distributional equity of urban tree canopy cover and ecosystem services across United States cities. PLoS ONE, 15(2), 1-22, DOI: 10.1371/journal.pone.0228499.

48. Russo A., Escobedo F.J., Timilsina N., Schmitt A.O., Varela S. & Zerbe S. (2014). Assessing urban tree carbon storage and sequestration in Bolzano, Italy. International Journal of Biodiversity Science, Ecosystem Services and Management, 10(1), 54-70, DOI: 10.1080/21513732.2013.873822.

49. Saptutyningsih E. & Ma’ruf A. (2015). Measuring the Impact of Urban Air Pollution: Hedonic Price Analysis and Health Production Function. Jurnal Ekonomi Pembangunan: Kajian Masalah Ekonomi Dan Pembangunan, 16(2), 146, DOI: 10.23917/jep.v16i2.1459.

50. Seiferling I., Naik N., Ratti C., & Proulx R. (2017). Green streets − Quantifying and mapping urban trees with street-level imagery and computer vision. Landscape and Urban Planning Journal, 93-101.

51. Singapore National Parks Board (2020). Urban Biodiversity. Available online: (Accessed on 25 August 2020).

52. Soga M. & Gaston K.J. (2020). The ecology of human – nature interactions. In roc. R. Soc. B 287: 20191882, DOI: 10.1098/rspb.2019.1882.

53. Tang Y., Chen A. & Zhao S. (2016). Carbon storage and sequestration of urban street trees in Beijing, China. Frontiers in Ecology and Evolution, 4 (May), 1-8, DOI: 10.3389/fevo.2016.00053.

54. Trees & Design Action Group (2012). Trees in the Townscape: A Guide for Decision Makers, 3. Available online:

55. Trees & Design Action Group (2014). Trees in Hard Landscapes A Guide for Delivery, 1-162. Retrieved from

56. Turner–Skoff J.B. & Cavender N. (2019). The benefits of trees for livable and sustainable communities. Plants, People, Planet, 1(4), 323-335, DOI: 10.1002/ppp3.39.

57. Ulmer J.M., Wolf K.L., Backman D.R., Tretheway R.L., Blain C.J., O’Neil-Dunne J.P. & Frank L.D. (2016). Multiple health benefits of urban tree canopy: The mounting evidence for a green prescription. Health and Place, 42, 54-62, DOI: 10.1016/j.healthplace.2016.08.011.

58. UN HABITAT (2016). MEASUREMENT OF CITY PROSPERITY: Methodology and Metadata.

59. United Nations (2019). Trees in Cities Challenge. Retrieved from

60. van der Jagt A. P. N. & Lawrence A. (2019). Local government and urban forest governance: insights from Scotland. Scandinavian Journal of Forest Research, 34(1), 53-66, DOI: 10.1080/02827581.2018.1532018.

61. Zhou W., Wang J. & Cadenasso M.L. (2017). Effects of the spatial configuration of trees on urban heat mitigation: A comparative study. Remote Sensing of Environment, 195, 1-12, DOI: 10.1016/j.rse.2017.03.043.


For citations:

Aditya R., Ningam M. Assessing City Greenness using Tree Canopy Cover: The Case of Yogyakarta, Indonesia. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(1):71-80.

Views: 1129

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)