Advanced search

Monitoring Land Use And Land Cover Changes Using Geospatial Techniques, A Case Study Of Fateh Jang, Attock, Pakistan

Full Text:


Change of land use and land cover (LULC) has been a key issue of natural resource conservation policies and environmental monitoring. In this study, we used multi-temporal remote sensing data and spatial analysis to assess the land cover changes in Fateh Jhang, Attock District, Pakistan. Landsat 7 (ETM+) for the years 2000, 2005 and 2010 and Landsat 8 (OLI/TIRS) for the year 2015 were classified using the maximum likelihood algorithms into built-up area, barren land, vegetation and water area. Post-classification methods of change detection were then used to assess the variation that took place over the study period. It was found that the area of vegetation has decreased by about 176.19 sq. km from 2000 to 2015 as it was converted to other land cover types. The built-up area has increased by 5.75%. The Overall Accuracy and Kappa coefficient were estimated at 0.92 and 0.77, 0.92 and 0.78, 0.90 and 0.76, 0.92 and 0.74, for the years 2000, 2005, 2010 and 2015, respectively. It turned out that economic development, climate change and population growth are the main driving forces behind the change. Future research will examine the effects of changing land use types on Land Surface Temperature (LST) over a given time period.

About the Authors

Aqil Tariq
Wuhan University

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing

430079, Wuhan, Hubei

Hong Shu
Wuhan University

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing

430079, Wuhan, Hubei

Saima Siddiqui
University of the Punjab

Department of Geography

Lahore, Punjab

Muhammad Imran
Institute of Geoinformation and Earth Observation PMAS-Arid Agriculture University

Rawalpindi, 46300

Muhammad Farhan
Hohai University

School of Earth Sciences and Engineering

Nanjing (210098)


1. Arshad W., Ali S. & Hussain M. (2012). Bars-09 : a High Yielding and Rust Resistant Wheat (Triticum Aestivum L.) Variety for Rainfed Areas of Punjab. In J Agric. Res, 50, 189-201.

2. Bansod R.D. & Dandekar U.M. (2018). Evaluation of Morna river catchment with RS and GIS techniques. Journal of Pharmacognosy and Phytochemistry, 7(1), 1945-1948.

3. Basim Y.M. & Ali S.A. (2018). APPLICATION OF REMOTE SENSING AND GIS IN CHANGE DETECTION IN GREEN MOUNTIAN FOREST, LIBYA. In The fifth Scientific Conference of Environment and Sustainable Development In the Arid and Semi – Arid Regions (ICESD), 1-13.

4. Behera M.D., Borate S.N., Panda S.N., Behera P.R. & Roy P.S. (2012). Modelling and analyzing the watershed dynamics using Cellular Automata (CA)-Markov model – A geo-information based approach. Journal of Earth System Science, 121(4), 1011-1024, DOI: 10.1007/s12040-012-0207-5.

5. Bonan G.B. (2008). Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882), 1444-1449, DOI: 10.1126/science.1155121.

6. Carrascal L.M., Galván I., & Gordo O. (2009). Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 118(5), 681-690, DOI: 10.1111/j.1600-0706.2008.16881.x.

7. Chen Y., Wang Q., Wang Y., Duan S.B., Xu M. & Li Z.L. (2016). A spectral signature shape-based algorithm for landsat image classification. ISPRS International Journal of Geo-Information, 5(9), DOI: 10.3390/ijgi5090154.

8. Dong L., Wang W., Ma M., Kong J. & Veroustraete F. (2009). The change of land cover and land use and its impact factors in upriver key regions of the Yellow River. International Journal of Remote Sensing, 30(5), 1251-1265, DOI: 10.1080/01431160802468248.

9. Firdaus R. (2014). Doctoral Dissertation Assessing Land Use and Land Cover Change toward Sustainability in Humid Tropical Watersheds , Indonesia Assessing Land Use and Land Cover Change toward Sustainability in Humid Tropical Watersheds , Indonesia, (March), 0-1.

10. Galicia L. & García-Romero A. (2007). Land Use and Land Cover Change in Highland Temperate Forests in the Izta-Popo National Park, Central Mexico. Mountain Research and Development, 27(1), 48-57, DOI: 10.1659/0276-4741(2007)27[48:lualcc];2.

11. Han H., Yang C., & Song J. (2015). Scenario simulation and the prediction of land use and land cover change in Beijing, China. Sustainability (Switzerland), 7(4), 4260-4279, DOI: 10.3390/su7044260.

12. Hanson P., & Weltzin J. (2000). Hanson 2000 Drought and US Forests.pdf. The Science of the Total Environment.

13. Hua A.K. (2017). Land Use Land Cover Changes in Detection of Water Quality: A Study Based on Remote Sensing and Multivariate Statistics. Journal of environmental and public health, 2017, 7515130, DOI: 10.1155/2017/7515130.

14. Jiménez-Muñoz J.C., Sobrino J.A., Skoković D., Mattar C. & Cristóbal J. (2014). Land Surface Temperature Retrieval Methods From Landsat-8 Thermal Infrared Sensor Data. IEEE Geoscience and Remote Sensing Letters, 11(10), 1840-1843, DOI: 10.1109/LGRS.2014.2312032.

15. Kabir A., Rahman J., Shamim A.A., Klemm R.D.W., Labrique A.B., Rashid M. et al. (2017). Identifying maternal and infant factors associated with newborn size in rural Bangladesh by partial least squares (PLS) regression analysis. PLoS ONE, 12(12), 1-16, DOI: 10.1371/journal.pone.0189677.

16. Khan S.A. (2015). Geochemical impact assessment of produced water of Sadqal oil and gas field on the soil surrounding the storage ponds in Fateh Jang area, Punjab, Pakistan. Journal of Himalayan Earth Sciences Volume, 48(2), 75-84, DOI: 10.1145/3132847.3132886.

17. Kulkarni N.M. (2017). Crop Identification Using Unsuperviesd ISODATA and K-Means from Multispectral Remote Sensing Imagery. International Journal of Engineering Research and Applications, 07(04), 45-49, DOI: 10.9790/9622-0704014549.

18. Lee S., Song K.-Y., Oh H.-J. & Choi J. (2012). Detection of landslides using web-based aerial photographs and landslide susceptibility mapping using geospatial analysis. International Journal of Remote Sensing, 33(16), 4937-4966, DOI: 10.1080/01431161.2011.649862.

19. Li L., Lu D. & Kuang W. (2016). Examining urban impervious surface distribution and its dynamic change in Hangzhou metropolis. Remote Sensing, 8(3), 19-24, DOI: 10.3390/rs8030265.

20. Li X., Wang Y., Li J., & Lei B. (2016). Physical and socioeconomic driving forces of land-use and land-cover changes: A Case Study of Wuhan City, China. Discrete Dynamics in Nature and Society, 2016(2014), DOI: 10.1155/2016/8061069.

21. Lu D., Mausel P., Brondízio E., & Moran E. (2004). Change detection techniques. International Journal of Remote Sensing, 25(12), 23652401, DOI: 10.1080/0143116031000139863.

22. Mahmood R., Pielke R.A., Hubbard, K. G., Niyogi, D., Dirmeyer, P. A., Mcalpine, C. et al. (2014). Land cover changes and their biogeophysical effects on climate. International Journal of Climatology, 34(4), 929-953, DOI: 10.1002/joc.3736.

23. Masum S.A. & Islam M.S. (2020). A case study on predicting the environmental impacts of untreated effluent generated from Tannery industrial estate in Dhaka, Bangladesh. Geography, Environment, Sustainability, 13(3), 22-31, DOI: 10.24057/2071-9388-2019-127.

24. Mishra V.N., Rai P.K., Kumar P. & Prasad R. (2016). Evaluation of land use/land cover classification accuracy using multi-resolution remote sensing images. Forum geografic, XV(1), 45-53, DOI: 10.5775/fg.2016.137.i.

25. Mohammady M., Moradi H.R., Zeinivand H. & Temme A.J.A.M. (2015). A comparison of supervised, unsupervised and synthetic land use classification methods in the north of Iran. International Journal of Environmental Science and Technology, 12(5), 1515-1526, DOI: 10.1007/s13762-014-0728-3.

26. Mousa B.G., Shu H., Freeshah M. & Tariq A. (2020). A novel scheme for merging active and passive satellite soil moisture retrievals based on maximizing the signal to noise ratio. Remote Sensing, 12(22), 1-23, DOI: 10.3390/rs12223804.

27. Nachappa T.G., Piralilou S.T., Ghorbanzadeh O., Shahabi H. & Blaschke T. (2019). Landslide susceptibility mapping for Austria using geons and optimization with the Dempster-Shafer theory. Applied Sciences (Switzerland), 9(24), DOI: 10.3390/app9245393.

28. Olokeogun O.S., Iyiola O.F. & Iyiola K. (2014). Application of remote sensing and GIS in land use/land cover mapping and change detection in Shasha Forest Reserve, Nigeria. In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences – ISPRS Archives, 40, 613-616, DOI: 10.5194/isprsarchives-XL-8-613-2014.

29. Pandya M., Baxi A., Potdar M.B., Kalubarme M.H. & Agarwal B. (2013). Comparison of Various Classification Techniques for Satellite Data. International Journal Of Scientific & Engineering Research, 4.

30. Pervez W., Uddin V., Khan S.A. & Khan J.A. (2016). Satellite-based land use mapping: comparative analysis of Landsat-8, Advanced Land Imager, and big data Hyperion imagery. Journal of Applied Remote Sensing, 10(2), 026004, DOI: 10.1117/1.jrs.10.026004.

31. Pradhan B., Lee S. & Buchroithner M.F. (2009). Use of geospatial data and fuzzy algebraic operators to landslide-hazard mapping. Applied Geomatics, 1(1-2), 3-15, DOI: 10.1007/s12518-009-0001-5.

32. Qian C. (2016). Impact of land use/land cover change on changes in surface solar radiation in eastern China since the reform and opening up. Theoretical and Applied Climatology, 123(1-2), 131-139, DOI: 10.1007/s00704-014-1334-5.

33. Rasti B., Scheunders P., Ghamisi P., Licciardi G. & Chanusso, J. (2018). Noise reduction in hyperspectral imagery: Overview and application. Remote Sensing, 10(3), 1-28, DOI: 10.3390/rs10030482.

34. Rawat J.S. & Kumar M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. Egyptian Journal of Remote Sensing and Space Science, 18(1), 77-84, DOI: 10.1016/j.ejrs.2015.02.002.

35. Raza A., Razzaq A., Mehmood S.S., Zou X., Zhang X., Lv Y. & Xu J. (2019). Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants, 8(2) , DOI: 10.3390/plants8020034.

36. Reis S. (2008). Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10), 61886202, DOI: 10.3390/s8106188.

37. Rosipal R. & Trejo L.J. (2000). CrossRef Listing of Deleted DOIs, 1, 97-123, DOI: 10.1162/15324430260185556.

38. Rustad L., Campbell J., Dukes J.S., Huntington T., Lambert K.F., Mohan J. & Rodenhouse N. (2012). Changing Climate, Changing Forests : The Impacts of Climate Change on Forests of the Northeastern United States and Eastern Canada. U.S.Forest Service, (August), 56.

39. Rwanga S.S. & Ndambuki J.M. (2017). Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS. International Journal of Geosciences, 08(04), 611-622, DOI: 10.4236/ijg.2017.84033.

40. Scheffler D. & Karrasch P. (2013). Preprocessing of hyperspectral images: a comparative study of destriping algorithms for EO1-hyperion. Image and Signal Processing for Remote Sensing XIX, 8892, 88920H, DOI: 10.1117/12.2028733.

41. Shaheen A., Naeem M.A., Jilani G., Shaheen A., Naeem M.A., Jilani G., & Shafiq M. (2015). Restoring the Land Productivity of Eroded Land through Soil Water Conservation and Improved Fertilizer Application on Pothwar plateau in Punjab Province , Pakistan Restoring the Land Productivity of Eroded Land through Soil Water Conservation and Improved. Plant Production Science ISSN:, 1008(196), 201.

42. Singh, S. K., Laari, P. B., Mustak, S., Srivastava, P. K., & Szabó, S. (2018). Modelling of land use land cover change using earth observation data-sets of Tons River Basin, Madhya Pradesh, India. Geocarto International, 33(11), 1202-1222, DOI: 10.1080/10106049.2017.1343390.

43. Singh S. & Rai P.K. (2018). Application of earth observation data for estimation of changes in land trajectories in Varanasi District, India. Journal of Landscape Ecology(Czech Republic), 11(1), 5-18, DOI: 10.1515/jlecol-2017-0017.

44. Tariq A., Shu H. (2020). Monitoring forest fire using Geo-spatial information techniques and spatial statistics: one case study of forest fire in Margalla Hills, Islamabad, Pakistan, 24.

45. Tariq A., Riaz I. & Ahmad Z. (2020). Land surface temperature relation with normalized satellite indices for the estimation of spatiotemporal trends in temperature among various land use land cover classes of an arid Potohar region using Landsat data. Environmental Earth Sciences, 79(1), 1-15, DOI: 10.1007/s12665-019-8766-2.

46. Tariq A. & Shu H. (2020). CA-Markov Chain Analysis of Seasonal Land Surface Temperature and Land Use Landcover Change Using Optical Multi-Temporal Satellite Data of. Remote Sensing, 12(20), 1-23, DOI: 10.3390/rs12203402.

47. UNEP (2005). 2004, Annual Evaluation Report UNEP.

48. Vasenev V.I., Yaroslavtsev A.M., Vasenev I.I., Demina S.A. & Dovltetyarova E.A. (2019). Land-use change in New Moscow: First outcomes after five years of urbanization. Geography, Environment, Sustainability, 12(4), 24-34, DOI: 10.24057/2071-9388-2019-89.

49. Vijayakumar S., Souza A.D. & Schaal S. (2014). Bayesian backfitting for high dimensional regression School of Informatics , University of Edinburgh Institute of Perception , Action and Behaviour Bayesian Backfitting for High Dimensional Regression by. In School of Informatics, University of Edinburgh, 11.

50. Vishwakarma C.A., Thakur S., Rai P.K., Kamal V. & Mukherjee S. (2016). Changing land trajectories: A case study from india using a remote sensing based approach. European Journal of Geography, 7(2), 61-71.

51. Yulianto F., Maulana T. & Khomarudin M.R. (2019). Analysis of the dynamics of land use change and its prediction based on the integration of remotely sensed data and CA-Markov model, in the upstream Citarum Watershed, West Java, Indonesia. International Journal of Digital Earth, 12(10), 1151-1176, DOI: 10.1080/17538947.2018.1497098.


For citations:

Tariq A., Shu H., Siddiqui S., Imran M., Farhan M. Monitoring Land Use And Land Cover Changes Using Geospatial Techniques, A Case Study Of Fateh Jang, Attock, Pakistan. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2021;14(1):41-52.

Views: 1590

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)