Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia)

https://doi.org/10.24057/2071-9388-2019-42

Full Text:

Abstract

The paper presents a series of maps of extreme climatic characteristics for the Ural region and their changes under climate warming observed in last decades. We calculate threshold, absolute and percentile-based indices with the use of daily temperature and precipitation dataset of 99 weather stations of Roshydromet. Extreme climatic characteristics were averaged by moving 30-year periods from 1951 to 2010 for temperature and from 1966 to 2015 for precipitation. The regression-based interpolation was used for mapping climatic extremes taking into consideration the influence of topography. Elevation and general curvature of the terrain are considered as independent variables. In addition, the changes of extreme characteristics between the 30-year periods were estimated. As a result, a series of maps of temperature and precipitation extremes for the Ural region has been created. The maps present not only spatial distribution of the climatic extremes, but also regional features of their changes under climate warming. In general, the revealed changes in extremes in the Ural region correspond to the trends observed on the most of the territory of Russia. There is a substantial decrease of the number of extremely cold days in winter, and the minimum winter temperature has a strong positive trend (up to 1-5°C/30 years). The maximum temperature in summer has a positive trend in most of the territory, but the increase rate does not exceed 2°C between 1951–1980 and 1981–2010. The precipitation extremes also increased up to 0.5-1.5 mm when comparing 1966–1995 and 1985–2015 periods.

About the Authors

Andrey N. Shikhov
Perm State University
Russian Federation
15 Bukireva street, Perm, 614990


Rinat K. Abdullin
Perm State University
Russian Federation
15 Bukireva street, Perm, 614990


Andrey V. Tarasov
Perm State University
Russian Federation
15 Bukireva street, Perm, 614990


References

1. Abdullin R.K. and Shikhov A.N. (2017). GIS based modelling of spatial and temporal distribution of severe weather events. Geodesy and Cartography = Geodezija i kartografija, 78(2), 26-32 (in Russian with English summary), DOI: 10.22389/0016-7126-2017-920-2-26-32.

2. Abdullin R.K. and Shikhov A.N. (2019). Mapping of current climate changes in the Ural. Geodesy and Cartography = Geodezija i kartografija, 80(1), 3-12 (in Russian with English summary), DOI: 10.22389/0016-7126-2019-943-1-3-12.

3. Alexander L., Zhang X., Peterson T., Caesar J., Gleason B., Klein Tank A., Haylock M., Collins D., Trewin B., Rahimzadeh F., Tagipour A., Rupa Kumar K., Revadekar J., Griffiths G., Vincent L., Stephenson D., Burn J., Aguilar E., Brunet M., Taylor M., New M., Zhai P., Rusticucci M. and Vazquez-Aguirre J. (2006). Global observed changes in daily climate extremes of temperature and precipitation. Journal of Geophysical Research, 111, D05109, DOI: 10.1029/2005JD006290.

4. Bardin M.Yu. and Platova T.V. (2013). Changes in thresholds of extreme temperatures and precipitation on territory of Russia with global warming. Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem, 2013, 25, 71-93 (in Russian with English summary).

5. Beguería S. and Vicente-Serrano S.M. (2005). Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. Journal of Applied Meteorology and Climatology, 45(1), 108-124, DOI: 10.1175/JAM2324.1.

6. Beguería S., Vicente-Serrano S.M., López-Moreno J.I. and García-Ruiz J.M. (2009). Annual and seasonal mapping of peak intensity, magnitude and duration of extreme precipitation events across a climatic gradient, northeast Spain. International Journal of Climatology, 29(12), 1759-1779, DOI: 10.1002/joc.1808.

7. Blennow K. and Persson P. (1998). Modelling local-scale frost variations using mobile temperature measurements with a GIS. Agricultural and Forest Meteorology, 89, 59-71, DOI: 10.1016/S0168-1923(97)00057-9.

8. Brown D.P. and Comrie A.C. (2002). Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Climate Research, 22, 115-128, DOI: 10.3354/cr022115.

9. Bulygina O., Razuvaev V., Korshunova N. and Groisman P. (2007). Climate variations and changes in extreme climate events in Russia. Environmental Research Letters, 2(4), 045020, DOI: 10.1088/1748-9326/2/4/045020.

10. Cherenkova E.A. (2017). Dangerous atmospheric drought in European Russia under recent summer warming. Fundamental and Applied Climatology, 2, 130-143 (in Russian with English summary), DOI: 10.21513/2410-8758-2017-2-130-143.

11. Chernokulsky A.V., Kozlov F.A., Semenov V.A., Zolina O.G. and Bulygina O.N. (2018). Climatology of precipitation of different genesis in Northern Eurasia. Russian Meteorology and Hydrology, 43(7), 425-435, DOI: 10.3103/S1068373918070014.

12. Danielson J.J. and Gesch D.B. (2011). Global multi-resolution terrain elevation data 2010 (GMTED2010): U.S. Geological Survey Open-File Report 2011–1073, 26 p.

13. Donat M.G., Alexander L.V., Yang H., Durre I., Vose R., Dunn R.J.H., Willett K.M., Aguilar E., Brunet M., Caesar J., Hewitson B., Jack C., Klein Tank A.M.G., Kruger A.C., Marengo J., Peterson T.C., Renom M., Oria Rojas C., Rusticucci M., Salinger J., Elrayah A.S., Sekele S.S., Srivastava A.K., Trewin B., Villarroel C., Vincent L.A., Zhai P., Zhang X. and Kitching S. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research Atmospheres, 118(5), 2098-2118, DOI: 10.1002/jgrd.50150.

14. Donat M.G., Alexander L.V., Yang H., Durre I., Vose R. and Caesar J. (2013). Global land-based datasets for monitoring climatic extremes. Bulletin of American Meteorological Society, 94(7), 997-1006, DOI: 10.1175/BAMS-D-12-00109.1.

15. Fick S.E. and Hijmans R.J. (2017). WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37, 4302-4315, DOI: 10.1002/joc.5086.

16. Frich P., Alexander L., Della-Marta P., Gleason B., Haylock M., Klein Tank A. and Peterson T. (2002). Observed coherent changes in climatic extremes during the second half of the 20th century. Climate Research, 19, 193-212, DOI: 10.3354/cr019193.

17. Goodale C.L., Aber J.D. and Ollinger S.V. (1998). Mapping monthly precipitation, temperature and solar radiation from Ireland with polynomial regression and a digital elevation model. Climate Research, 10, 35-49, DOI: 10.3354/cr010035.

18. Goovaerts P (2000). Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology, 228, 113-129, DOI: 10.1016/S0022-1694(00)00144-X.

19. Groisman P., Knight R., Easterling D., Karl T., Hegerl G. and Razuvaev V. (2005). Trends in intense precipitation in the climate record. Journal of Climate, 18, 1326-1350, DOI: 10.1175/JCLI3339.1.

20. Groisman P.Y. and Soja A.J. (2009). Ongoing climatic change in Northern Eurasia: justification for expedient research. Environmental Research Letters, 4, 045002, DOI: 10.1088/1748-9326/4/4/045002.

21. Kiktev D.B., Caesar J. and Alexander L. (2009). Temperature and precipitation extremes in the second half of the twentieth century from numerical modeling results and observational data. Izvestiya RAN. Fizika atmosfery i okeana, 45(3), 305-315 (in Russian with English summary), DOI: 10.1134/S0001433809030025.

22. Kim K.-Y., Kim J.-Y., Kim J., Yeo S., Na H., Hamlington B.D. and Leben R.R. (2019). Vertical Feedback Mechanism of Winter Arctic Amplification and Sea Ice Loss. Scientific Reports, 9(1), Art. no. 1184, DOI: 10.1038/s41598-018-38109-x.

23. Li L. and Zha Y. (2018). Mapping relative humidity, average and extreme temperature in hot summer over China. Science of the Total Environment, 615, 875-881, DOI: 10.1016/j.scitotenv.2017.10.022.

24. Mokhov I.I., Semenov V.A. (2016). Weather and Climate Anomalies in Russian Regions Related to Global Climate Change. Russian Meteorology and Hydrology, 41(2), 84-92, DOI: 10.3103/S1068373916020023.

25. Ninyerola M., Pons X. and Roure J.M. (2000). A methodological approach of climatological modelling of air temperature and precipitation through GIS techniques. International Journal of Climatology, 20, 1823-1841, DOI: 10.1002/1097-0088(20001130)20:14<1823.

26. Perevedentsev Yu.P., Sokolov V.V. and Naumov E.P. (2013). Climate and environment of the Privoljsky Federal District. Kazan, Kazan Federal University (in Russian).

27. Pyankov S.V., Shikhov A.N. and Abdullin R.K. (2017). Modern methods and technologies in thematic atlas mapping (on the example of the AIS «Hazardous hydro-meteorological events of the Ural Prikamye region»). Challenges in Geography = Voprosy Geografii, 144, 208-226 (in Russian with English summary).

28. Screen J.A. (2014). Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nature Climate Change, 4, 577-582, DOI: 10.1038/nclimate2268.

29. Shikhov A.N., Perminova E.S. and Perminov S.I. (2019). Satellite-based analysis of the spatial patterns of fire and storm-related forest disturbances in the Ural region, Russia, Natural Hazards, 97(1), 283-308, DOI: 10.1007/s11069-019-03642-z.

30. Shutov V.A. (1998). Investigations, analyses and modeling of different scaled spatial variability of snow storage. Izvestiya, Seriya Geograficheskaya, 1, 122-132 (in Russian with English summary).

31. Titkova T.B., Cherenkova E.A. and Semenov V.A. (2018). Regional features of changes in winter extreme temperatures and precipitation in Russia in 1970–2015. Led i Sneg, 58(4), 486-497 (In Russian with English summary), DOI: 10.15356/2076-6734-2018-4-486-497.

32. Vicente-Serrano S.M., Saz-Sánchez M.A. and Cuadrat J.M. (2003). Comparative analysis of interpolation methods in the middle Ebro Valley (Spain): Application to annual precipitation and temperature. Climate Research, 24(2), 161-180, DOI: 10.3354/cr024161.

33. Weisse A.K. and Bois P. (2002). A comparison of methods for mapping statistical characteristics of heavy rainfall in the French Alps: the use of daily information. Hydrological Sciences Journal, 47(5), 739-752, DOI: 10.1080/02626660209492977.

34. Zolina O. and Bulygina O. (2016). Current climatic variability of extreme precipitation in Russia. Fundamental and Applied Climatology, 1, 84-103 (in Russian with English summary), DOI:10.21513/2410-8758-2016-1-84-103.

35. Zolotokrylin A.N. and Cherenkova E.A. (2017). Seasonal changes in precipitation extremes in Russia for the last several decades and their impact on vital activities of the human population. Geography, Environment, Sustainability, 10(4), 69-82, DOI: 10.24057/2071-9388-2017-10-4-69-82.


For citation:


Shikhov A.N., Abdullin R.K., Tarasov A.V. Mapping temperature and precipitation extremes under changing climate (on the example of The Ural region, Russia). GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(2):154-165. https://doi.org/10.24057/2071-9388-2019-42

Views: 211


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)