Advanced search

Heavy Metals In Marine Aerosols Of The Azov Sea

Full Text:


The content of heavy metals and Al in the aerosol matter over the Sea of Azov has been studied. According to the special test the vast majority of samples were attributed to the type of marine aerosol. The ranges of contents were determined as following: Fe (200 – 2000 ng/m3), Al (20 – 200 ng/m3), Zn (10 – 280 ng/m3), Cu (2 – 23 ng/m3), Ni (1 – 16 ng/m3), Pb (3 -30 ng/m3), Cd (0.4 –2.8 ng/m3); Mn (3 – 23 ng/m3), Cr (1 – 15 ng/m3). The spatial distribution of HMs in the marine aerosol of the Sea of Azov depends on the influence of the river-sea geochemical barrier zone in the Taganrog Bay and the anthropogenic impact of the coastal industrial cities. HM concentrations decrease from the northern coast of the bay and the mouth of the Don River towards the open sea. The maximum HM content in marine aerosol observed in the mouth area of the Don River. It may be associated with the HM accumulation at the river-sea geochemical barrier, and also with the anthropogenic impact of the cities of Rostov-on-Don, Azov and Taganrog. Anthropogenic impact of the city of Mariupol cause the maximum values of Fe, Cr, and Cd in marine aerosol matter of the western part of the Taganrog Bay.

About the Authors

Marina A. Chichaeva
Peoples Friendship University of Russia (RUDN University)
Russian Federation

Mikhail Yu. Lychagin
Lomonosov Moscow State University
Russian Federation

Anton V. Syroeshkin
Peoples Friendship University of Russia (RUDN University)
Russian Federation

Olga V. Chernitsova
Lomonosov Moscow State University
Russian Federation


1. Akinori I., Myriokefalitakis S., Kanakidou M., Mahowald N. M., et al. (2019). Pyrogenic iron: The missing link to high iron solubility in aerosols. Science Advances, 5(5), 7671, DOI: 10.1126/sciadv.aau7671 .

2. Aryasree S, Nair PR, Girach IA, Jacob S. (2015). Winter time chemical characteristics of aerosols over the Bay of Bengal: continental influence. Environmental Science and Pollution Research, 22(19), 14901-14918, DOI: 10.1007/s11356-015-4700-7.

3. Brooks S.D., Thornton D.C. (2018). Marine Aerosols and Clouds. Annual Review of Marine Science, 3(10), 289-313, DOI: 10.1146/annurevmarine-121916-063148.

4. Buseck P. R., Posfai M. (1999) Airborne minerals and related aerosol particles: Effects on climate and the environment. Proceedings of the National Academy of Sciences, 96(7), 3372–3379, DOI:10.1073/pnas.96.7.3372.

5. Chandrakar K.K., Cantrell W., Chang K., Ciochetto D., et al. (2016). Aerosol indirect effect from turbulence-induced broadening of clouddroplet size distributions. Proceedings of the National Academy of Sciences USA, 113(50), 14243-14248, DOI: 10.1175/JAS-D-18-0006.1.

6. Coquery M., Villeneuve J.P. (2001). Final report on the split sampling exercises and quality assurance activities. EU Project № ENV RM S9602, Amsterdam, ICWC, 51.

7. Csavina J., Field J., Taylor M.P., Gao S., et al. (2012). A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations. Science of the Total Environment, 433, 58-73, DOI: 10.1016/j.scitotenv.2012.06.013.

8. Fleming L.E., Bean J.A., Kirkpatrick B., Cheng Y.S., et al. (2009). Exposure and effect assessment of aerosolized red tide toxins (brevetoxins) and asthma. Environmental Health Perspectives, 117(7), 1095-100. DOI: 10.1289/ehp.0900673.

9. Furness R.W. (2017). Heavy Metals in the Marine Environment. CRC press.

10. Garrett W.D. (1965). Collection of slick-forming materials from the sea surface. // Limnol. Oceanog, 10, 602-605. .

11. Georgoulias A.K., Alexandri G., Kourtidis K.A., Lelieveld J., et al. (2016). Spatiotemporal variability and contribution of different aerosol types to the Aerosol Optical Depth over the Eastern Mediterranean. Atmospheric Chemistry And Physics, 16(21), 13853-13884, DOI: 10.5194/acp-1613853-2016.

12. Golubeva N.I., Burtseva L.V., Gromov S.A. (2011). Heavy Metals in Atmospheric Air in the Kara Sea Water Area in September–October. Oceanology, 58, 870-878. DOI:

13. Goncharuk V.V., Lapshin V.B., Chichaeva M.A., Samsoni-Todorov A.O., et al. (2012). Heavy metals, aluminum and arsenic in aerosols of the oceans. Chemistry and Water Technology, 34(1), 1-15, DOI: 10.3103/S1063455X12010018.

14. Gordeev V.V. (1983). River runoff into the ocean and features of its geochemistry. Moscow: Nauka.

15. Grebennikova T.V., Syroeshkin A.V., Chichaeva M.A., Esper S.A., Lvov D.K. (2017). Natural foci of influenza A in the western Arctic. Voprosy Virusologii, 62(1), 11-17, DOI: 10.18821/0507-4088-2017-62-1-11-17.

16. Grishchenko S.V., Grishchenko I.S., Kostenko V.S., Basenko I.N. et al. (2018). Hygienic assessment of atmospheric air pollution of populated areas of Donbass by heavy metals. Bulletin of Hygiene and Epidemiology, 22(1), 11-15.

17. Izhar S., Goel A., Chakraborty A., Gupta T. Annual trends in occurrence of submicron particles in ambient air and health risk posed by particle bound metals. (2016). Chemosphere, 146, 582-590, DOI: 10.1016/j.chemosphere.2015.12.039.

18. Jordi A., Basterretxea G., Tovar-Sánchez A., Alastuey A., Querol X. (2012). Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proceedings of the National Academy of Sciences USA, 109(52), 21246-21249, DOI: 10.1073/pnas.1207567110.

19. Kirkpatrick B., Fleming L.E., Bean J.A., Nierenberg K., et al. (2011). Aerosolized Red Tide Toxins (Brevetoxins) and Asthma: Continued health effects after 1 hour beach exposure. Harmful Algae, 10(2), 138-143, DOI:10.1016/j.hal.2010.08.005.

20. Kolesnikov M.V., Matveeva I.S., Lapshin V.B., Pletenev S.S., et al. (2005). Heavy metals in marine aerosols of the Russian part of the Black sea. Oceanology, 45(1), 102-111.

21. Lang-Yona N., Lehahn Y., Herut B., Burshtein N., Rudich Y.. (2014) Marine aerosol as a possible source for endotoxins in coastal areas. Science of the Total Environment, 499, 311-8, DOI: 10.1016/j.scitotenv.2014.08.054.

22. Li J., Han Z., Yao X., Xie Z., Tan S. (2019). The distributions and direct radiative effects of marine aerosols over East Asia in springtime. Sci Total Environ. 651(2), 1913–1925, DOI: 10.1016/j.scitotenv.2018.09.368.

23. Li S., Du L., Tsona N.T., Wang W. (2018). The interaction of trace heavy metal with lipid monolayer in the sea surface microlayer. Chemosphere. 196, 323-330. DOI: 10.1016/j.chemosphere.2017.12.157.

24. Liu Y., Li S., Sun C., Qi M., et al. (2018) Pollution Level and Health Risk Assessment of PM2.5-Bound Metals in Baoding City Before and After the Heating Period. International Journal of Environmental Research and Public Health, 15(10), 2286. DOI: 10.3390/ijerph15102286.

25. Mahowald N.M., Hamilton D.S., Mackey K.R., Moore J.K., et al. (2018). Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications, 9(1), 2614, DOI: 10.1038/s41467-018-04970-7.

26. Marín-Beltrán I., Logue J.B., Andersson A.F., Peters F. (2019). Atmospheric Deposition Impact on Bacterial Community Composition in the NW Mediterranean. Frontiers in Microbiology, 10(858), 1-14, DOI: 10.3389/fmicb.2019.00858.

27. O’Dowd C.D., Jimenez J.L., Bahreini R., Flagan R.C., et al. (2002). Marine aerosol formation from biogenic iodine emissions. Nature, 417 (6889), 597-598. DOI: 10.1038/nature00775.

28. O’Dowd C.D., de Leeuw G. (2007). Marine aerosol production: a review of the current knowledge. Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, 365(1856), 1753-1774, DOI: 10.1098/rsta.2007.2043.

29. Patocka J., Nepovimova E., Wu Q., Kuca K. (2018). Palytoxin congeners. Archives of Toxicology, 92(1), 143-156, DOI: 10.1007/s00204-017-2105-8. Paytan A., Mackey K.R.M., Chen Y., Lima I.D., et al.(2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences USA, 106(12), 4601-4605, DOI: 10.1073/pnas.0811486106.

30. Qureshi A, MacLeod M, Hungerbühler K. (2009). Modeling aerosol suspension from soils and oceans as sources of micropollutants to air. Chemosphere, 77(4), 495-500, DOI: 10.1016/j.chemosphere.2009.07.051.

31. Rädlein N., Heumann K.G. (2006). Trace Analysis of Heavy Metals in Aerosols Over the Atlantic Ocean from Antarctica to Europe. International Journal of Environmental Analytical Chemistry, 48, 127-150.

32. Rastelli E., Corinaldesi C., Dell’Anno A., Lo Martire M., et al. (2017). Transfer of labile organic matter and microbes from the ocean surface to the marine aerosol: an experimental approach. Scientific Reports, 7, 11475, DOI: 10.1038/s41598-017-10563-z.

33. Sajeev P., Randall V.M., Van Donkelaar A., et al. (2014). Global Chemical Composition of Ambient Fine Particulate Matter for Exposure Assessment Environmental Science & Technology, 48(22), 13060-13068, DOI: 10.1021/es502965b.

34. Salomons W., Bayne B. L., Duursma E.K., Förstner U. (1988). Pollution of the North Sea. Springer, Berlin, Heidelberg, 300-347.

35. Sánchez-Rodas D., Alsioufi, L., Sánchez de la Campa A.M., González-Castanedo Y. (2017). Antimony speciation as geochemical tracer for anthropogenic emissions of atmospheric particulate matter, Journal of Hazardous Materials, 324(B), 213-220, DOI: 10.1016/j.jhazmat.2016.10.051.

36. Song S.K., Shon Z.H., Choi Y.N., Son Y.B., et al. (2019). Global trend analysis in primary and secondary production of marine aerosol and aerosol optical depth during 2000–2015. Chemosphere, 224, 417-427, DOI: 10.1016/j.chemosphere.2019.02.152.

37. Sullivan R.C., Levy R.C., da Silva A.M., Developing and diagnosing climate change indicators of regional aerosol optical properties. Scientific Reports, 7(1), 1-13, DOI: 10.1038/s41598-017-18402-x.

38. Syroeshkin A.V., Chichaeva M.A. (2010). Concentaration level of heavy metals within marine aerosols of Western Arctic seas, Southern Atlantic and Arctic ocean. Trace elements in medicine, 11(2), 15.

39. Takata K., Saito K., Yasunari T. (2009). Changes in the Asian monsoon climate during 1700–1850 induced by preindustrial cultivation. Proceedings of the National Academy of Sciences USA, 106(24), 9586-9589, DOI: 10.1073/pnas.0807346106.

40. Tuohy A., Bertler N., Neff P., Edwards R., Emanuelsson D., et al. (2015). Transport and deposition of heavy metals in the Ross Sea Region, Antarctica. Journal of Geophysical Research: Atmospheres, 120, 10, 996-11,011, DOI: 10.1002/2015JD023293.

41. Van Dolah F.M..(2000). Marine algal toxins: origins, health effects, and their increased occurrence. Environmental Health Perspectives, 108(1), 133-41, DOI: 10.1289/ehp.00108s1133.

42. Von Glasow R., Jickells T.D., Baklanov A., Carmichael G.R., et al. (2013). Megacities and Large Urban Agglomerations in the Coastal Zone: Interactions Between Atmosphere, Land, and Marine Ecosystems. AMBIO A Journal of the Human Environment, 42(1), 13-28, DOI: 10.1007/s13280-012-0343-9.

43. Vinogradova A.A., Ivanova Yu.A. (2017). The transfer of air masses and pollution to the Arctic islands of Russia (1986–2016): long-term, interannual and seasonal variations. Geophysical processes and biosphere. 16(4), 5-20, DOI: 10.21455/GPB2017.4-1.

44. Vinogradova A.A., Kotova E.I. (2019). Heavy metal pollution of the northern seas of Russia: flow from the atmosphere and river runoff. Geophysical processes and biosphere. 18 (1), 22-32, DOI: 10.21455/GPB2019.1-3.

45. Voityuk Yu. Yu., Kuraeva I.V., Loktionova E.P. (2018). Sources of heavy metal pollution in the territories of industrial agglomerations of ferrous metallurgy. Materials of the VI International Scientific Conference. Modern problems of landscape science and geoecology (on the 100th anniversary of the birth of Professor V.A. Dementiev). Ed. A.N. Witchenko.

46. Walsh J.J., Lenes J.M., Weisberg R.H., Zheng L., et al. (2017). More surprises in the global greenhouse: Human health impacts from recent toxicmarine aerosol formations, due to centennial alterations of world-wide coastal food webs. Marine Pollution Bulletin, 116(1-2), 9-40, DOI: 10.1016/j.marpolbul.2016.12.053.

47. Wang X., He S., Chen, Zhang Y, et al. (2018). Spatiotemporal Characteristics and Health Risk Assessment of Heavy Metals in PM2.5 in Zhejiang Province. International Journal of environmental research and public health, 15(4), 583, DOI: 10.3390/ijerph15040583.

48. Witt M., Baker A. R., Jickells T. D. (2006). Atmospheric trace metals over the Atlantic and South Indian Oceans: Investigation of metal concentrations and lead isotope ratios in coastal and remote marine aerosols. Atmospheric Environment, 40, 5435-5451, DOI: 10.1016/j.atmosenv.2006.04.041.

49. Zatsepa S.N., Lapshin V.B., Oradovsky S.G., Simonov A.I. A device for sampling water from a surface microlayer. Copyright certificate No. 1375974 of December 3, 1985.

50. Klyonkin A.A., Korablina I.V., Korpakova I.G. (2007). Description of the current level of pollution of water and bottom sediments of the Sea of Azov by heavy metals. Ecology and industry of Russia, 5, 30-33.

51. Kondratiev K. Ya., Moskalenko N.I., Pozdnyakov D.V. (1983). Atmospheric aerosol. Leningrad: Hydrometeoizdat.

52. Lapshin V.B., Chichaeva M.A., Matveeva I.S., Chichaev A.N., et al. (2010). Heavy metals, aluminum and arsenic in aerosols of the Atlantic, Arctic Oceans and European seas of Russia. Investigated in Russia, 34, 393-403.

53. Lapshin V.B., Yablokov M.Yu., Matveeva I.S., et al. (2002), Are marine aerosols toxic? Investigated in Russia, 118, 1302-1316.

54. Lukashin V.N., Klyuvitkin A.A., Bobrov V.A., Dara O.M., Shevchenko V.P. (2018). The chemical composition of the aerosols of the North Atlantic. Oceanology 58(5), 781-791, DOI: 10.1134/S0030157418050052.

55. Maslennikova A.V., Shevchenko V.P., Belogub E.V., Maslov A.V., Blinov I.A. (2018). Sedimentary material from the drifting ices of the Ermak Plateau and the Fram Strait: new data on spore-pollen spectra, mineralogy, and geochemistry. Mineralogy. 4(4), 102-118.

56. Matishov G.G. (2002). Ecosystem studies of the Sea of Azov and the coast. Volume 4, Apatity: Publ. KSC RAS.

57. Mikhailenko A.V., Fedorov Yu.A., Dotsenko I.V. (2018). Heavy metals in the components of the landscape of the Sea of Azov. Rastov-on-Don: Southern Federal University.

58. Monin V.L. (2012). Monitoring of technogenic air pollution in the city of Mariupol. Bulletin of the Azov State Technical University, 24, 327-334.

59. Nechipurenko V.V., Merinova Yu.Yu. (2019). Industrial complex as a factor in the pollution of urban systems of the Rostov region. Collection of scientific papers based on the materials of the 9th International Scientific and Practical Conference. Edited by E.I. Tikhomirova. 81-85.

60. Savenko V.S. The geochemistry of ocean aerosol. (1998). Bulletin of Moscow University. ser. 5. Geography, 1, 28-32.

61. Smirnov A.N., Lapshin V.B., Balyshev A.V., Lebedev I.M., Syroeshkin A.V. (2004). Supranadmolecular complexes of water. Investigated in Russia, 38, 413-421.

62. Smirnov A.N., Lapshin V.B., Balyshev A.V., Popov P.I., Lebedev I.M., Syroeshkin A.V. (2003). Cooperative anisotropic motion of the dispersed phase in aqueous solutions. Investigated in Russia, 39, 422-425.

63. Syroeshkin A.V., Popov P.I. (2005). «Marine Aerosols. Toxicity, research methods», Moscow: RUDN.

64. Syroeshkin A.V., Smirnov A.N., Goncharuk V.V., Uspenskaya E.V., et al. (2006). Water as a heterogeneous structure. Investigated in Russia, 88, 843-854.

65. Syroeshkin A.V., Chichaeva M.A., Matveeva I.S. (2014). Repeatability of one-to-one relationships between concentrations of heavy metals and dispersion of marine aerosol (as exemplified by two expeditionary studies on the Black Sea. Heliogeophysical studies, 10(10), 113-127.

66. Tkachenko A.N., Tkachenko O.V., Lychagin M.Yu., Kasimov N.S. (2017). Heavy metal flows in aquatic systems of the Don and Kuban deltas. Doklady Academy of Sciences, 474(2), 234-237.

67. Khovansky A.D. (1990). Geochemical assessment of the state of the river system of the Lower Don, Rostov-on-Don: Publishing House of the University of Rostov.

For citation:

Chichaeva M.A., Lychagin M.Yu., Syroeshkin A.V., Chernitsova O.V. Heavy Metals In Marine Aerosols Of The Azov Sea. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(2):127-134.

Views: 215

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)