Preview

GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY

Advanced search

Turning Water Pollution Sources Into Assets: Exploring Innovative Options Of Using Abandoned Mines For Generating And Storing Renewable Energy

https://doi.org/10.24057/2071-9388-2020-03

Full Text:

Abstract

Through moving large volumes of rock for decades or even centuries from geological underground to surface, industrial scale mining invariably alters the natural local and regional hydrological conditions. Consequences include irreversible changes of flow gradients and water quality in aquifers and streams effected through dewatering, ground subsidence, acid mine drainage, etc. During their lifetime mines spent significant resources and energy on maintaining an ever-increasing diversion from natural hydraulic equilibria through pumping rising volumes of ingress water from ever greater depths, especially if operating below water-rich formations (karst) or in humid climates. Associated pumping costs may even lead to premature mine closure. In cases where complete flooding of closed mines is not an option (e.g. to protect water resources or infrastructure) such costs remain well after mines closed for as long as flooding restrictions apply. In large and densely populated regions in South Africa or Germany, for example, where mining succeeded in triggering urbanisation and self-sustaining economic development it is (currently) assumed that pumping will be needed forever. Accordingly, postclosure water management is no longer only a long-term liability but indeed a perpetual burden placed on future generations that had little direct benefits from earlier mining. This paper focuses specifically on possible ways of reducing perpetual postclosure water management costs specifically of using abandoned mines for generating and storing renewable energy. It discusses successful examples already implemented, concepts investigated but not yet realised as well as technologies that received little, if any, attention to date. The latter range from using mines (included flooded ones) for the storage of electrical energy via different technologies, harvesting geothermal energy from mine water and voids to different ways of transforming chemical energy contained in mine water into electricity.

About the Author

Frank Winde
Wismut GmbH; North-West University
Germany

Department Monitoring and Radiation Protection, Wismut GmbH; Research Unit for Environmental Science and Management, North-West University

Jagdschänkenstrasse 29 D-09117 Chemnitz, Germany
Vanderbijlpark Campus, 1174, Vanderbijlpark 1900, South Africa 



References

1. Acatech [ed.] (2017). Rohstoffe für die Energiewende. Wege zu einer sicheren and nachhaltigen Versorgung. Stellungnahme, Berlin (in German).

2. Ahmed N. (2018). We don’t mine enough rare earth metals to replace fossil fuels with renewable energy. [online] Available at: www.vice.com/en_us/article/a3mavb/we-dont-mine-enough-rare-earth-metals-to-replace-fossil-fuels-with-renewable-energy [Accessed 12 December 2018].

3. Bellinger I. (2018). National Geographic Germany: Neue Energien, December 2018, 127-132.

4. Bloomberg (2019). ‘Land no one else wants’ gets solar as coal-and-nukes era fades [online]. Available at: www.miningweekly.com/article/land-no-one-else-wants-gets-solar-as-coal-and-nukes-era-fades-2019-04-25 [Accessed 25 April 2019].

5. Cloete K. (2019). Plea for collaboration. Mining Weekly, 22-28 February, 16, quoting M Cutifani, CEO of Anglo American at the Mining Indaba in Cape Town, South Africa.

6. Dombrowski B. (2018). Remediating mining legacy site: Case study hard coal mining in the Ruhr area. In: Academy of Science of South Africa [ed.] (2018). Proceedings of the Science Business Society Dialogue conference, Linking science, society, business and policy for the sustainable use of abandoned mines in the SDAC region, 28-30 November 2017, Johannesburg, South Africa, 22-23.

7. DuBois JR. (2014). United States Patent No. US 8.677.752 B2, power generation system.

8. DuBois JR. (2018). Generating Renewable Energy and Recovering Water from Underground Mines. Hand-out brochure, unpublished, 5.

9. Eberfalvi J., Nemeth G., Varhegyi A. (2015). Challenges of the after-care activities on the uranium mining and ore processing legacy sites in Hungary. In: Wismut GmbH [eds.]: Reclaimed mining sites between post-remedial care and reuse. Proceedings of the International Mining Symposium WISSYM 2015, Bad Schlema, 31 August – 3 September 2015, 361-370.

10. Elwert T. (2018). Recovery and reprocessing of mine tailings: experiences from Germany. In: Academy of Science of South Africa [ed.] (2018). Proceedings of the Science Business Society Dialogue conference, Linking science, society, business and policy for the sustainable use of abandoned mines in the SDAC region, 28-30 November 2017, Johannesburg, South Africa, 38-39.

11. FPTM (Future Power Technology Magazine). (2019). Statkraft Osmotic Power Plant, the First Osmotic Power Or Salinity Gradient Power Generation Plant. [online] Available at: www.power-technology.com/projects/statkraft-osmotic/ [Accessed 26 August 2019].

12. Friedrich et al. (2016). Elektrochemische Abtrennung tailingsrelevanter Schwermetallkationen und geogener Radionuklide aus geothermalen Tiefenwässern. In: Proceedings Geothermie Kongress, Essen 2016. [online] Available at: www.geothermie.de/bibliothek/konferenzdatenbank [Accessed 20 May 2020].

13. Friedrich H-J. (2018). Resource extraction from mine water. In: Academy of Science of South Africa [ed.] (2018). Proceedings of the Science Business Society Dialogue conference, Linking science, society, business and policy for the sustainable use of abandoned mines in the SDAC region, 28-30 November 2017, Johannesburg, South Africa, 40-41.

14. Friedrich H-J., Viehweger K., Winde F. (2018). Innovative Optionen zur Energiegewinnung aus Grubenwasser und gefluteten Grubengebäuden. Projektantrag zum Themenbereich: Inwertsetzung energetischer Nutzungspotenziale von Grubenwasser. Forum Bergbau und Wasser, Deutsches Stiftungszentrum GmbH. Dez. 2018, unveröffentlicht, 31 Seiten. (in German).

15. Ghenai C., Janajreh I. (2013). Comparison of resource intensities and operational parameters of renewable, fossil fuel, and nuclear power systems. Int J of Thermal & Environmental Engineering, 5(2). [online] Available at: www.researchgate.net/publication/275965432_Comparison_of_Resource_Intensities_and_Operational_Parameters_of_Renewable_Fossil_Fuel_and_Nuclear_Power_Systems, 95-104, DOI: 10.5383/ijtee.05.02.001 [Accessed 20 May 2020].

16. Gigler B. (2018). Die Zukunft der Energieversorgung: Kombinierter Energiespeicher als Schlüsseltechnologie. [online] Available at: www.idw-online.de/de/news704503 [Accessed 23 October 2018].

17. Goedecke M. (2015). Wismut-Erbe und sächsische Rohstoffstrategie – eine noch nicht abgeschlossene Erfolgsgeschichte. In: Wismut GmbH [eds.]: Reclaimed mining sites between post-remedial care and reuse. Proceedings of the International Mining Symposium WISSYM 2015, Bad Schlema, 31 August – 3 September 2015, 237-250. (in German).

18. Helioscsp (2010). China’s first solar tower plant starts operating in desert. Solar Thermal Energy News. [online] Available at: www.helioscsp.com/chinas-first-solar-tower-plant-starts-operating-in-desert/, updated 28 Dec. 2010 [Accessed 26 Aug. 2019].

19. Hoth N., Wendler C., Kassahun A., Ussath M., Drebenstedt C. (2015). Rückgewinnung wirtschaftstragischer Elemente aus Bergbauwässern – Randbedingungen und Herausforderungen. In: Wismut GmbH [eds.]: Reclaimed mining sites between post-remedial care and reuse. Proceedings of the International Mining Symposium WISSYM 2015, Bad Schlema, 31 August – 3 September 2015, 227-236. (in German).

20. Janoschka T., Martin N., Martin U., Friebe C., Morgenstern S., Hiller H., Hager M.D., Schubert U.S. (2015). An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature, 527, 78-94, DOI: 10.1038/nature15746.

21. Jessop A. (1995). Geothermal energy from old mines at Springhill, Nova Scotia, Canada. IGA [online]. Available at: www.geothermalenergy.org/pdf/IGAstandard/WGC/1995/1-jessop2.pdf 463-468. [Accessed 20 May 2020].

22. Kaiser F., Winde F., Erasmus E. (2018). Storing energy in disused mines: comparing pumped water and compressed air-based technologies. International Journal of Mining and Mineral Engineering, 9(3), 177-195, DOI: 10.1504/IJMME.2018.096096.

23. Kidston S. (2018). Implementing pumped hydro energy storage at an open pit mines: a pilot project from Australia. In: Academy of Science of South Africa: Linking science, society, business and policy for the sustainable use of abandoned mines in the SADC region. Proceedings of the science business society dialogue conference, 28-30 November 2017, Indaba Hotel, Johannesburg, Gauteng, South Africa, 28-30, DOI: 10.17159/assaf.2018/0025.

24. LfU (Landesamt für Umwelt). (2018). Niedrigwassersituation 2018. Arbeitsgruppe: Bergbaubedingte Stoffeinträge in die Spree und Spree Zuflüsse; Ministerium Ländliche Entwicklung, Umwelt und Landwirtschaft, Land Brandenburg; PowerPoint presentation, 10 slides. [online] Available at: www.braunespreewatch.de/images/studien/20181120_Anlage%2010.pdf [Accessed 20 November 2018] (in German).

25. Niemann A. (2018). UPHES feasibility: Case study from German hard coal mines. In: Academy of Science of South Africa [ed.] (2018). Proceedings of the Science Business Society Dialogue conference, Linking science, society, business and policy for the sustainable use of abandoned mines in the SDAC region, 28-30 November 2017, Johannesburg, South Africa, 31-32.

26. Niemann A., Hager S., Lux J-P. (2015). Perspektiven der Bergbaufolgenutzung zur Energiespeicherung – Pumpspeicherwerke unter Tage im Ruhrrevier. In: Wismut GmbH [eds.]: Reclaimed mining sites between post-remedial care and reuse. Proceedings of the International Mining Symposium WISSYM 2015, Bad Schlema, 31 August – 3 September 2015, 199-206.

27. Ntholi T. (2018). Geothermal energy as a power source for PUMPS, a geo-engineering system designed for in-situ remediation of acid mine water in abandoned Witwatersrand gold mines. In: Academy of Science of South Africa [ed.]: Proceedings of the Science Business Dialogue Conference «Linking Science, Society, Business and Policy for the Sustainable Use of Abandoned Mines in the SADC Region», 28-30 November 2017, Indaba Hotel, Johannesburg, Gauteng, South Africa, 38, DOI: 10.17159/assaf.2018/0025.

28. Paul M., Meyer J., Jenk U., Kassahun A., Baacke D., Forbrig N., Metschies T. (2015). Kernaspekte des langfristigen Wassermanagements an den sächsisch-thüringischen Wismut-Standorten. In: Wismut GmbH [eds.]: Reclaimed mining sites between post-remedial care and reuse. Proceedings of the International Mining Symposium WISSYM 2015, Bad Schlema, 31 August – 3 September 2015, 71-86. (in German).

29. Penczek N. (2018). Harvesting geothermal heat from mine water: a pilot project from Germany. In: Academy of Science of South Africa [ed.] (2018). Proceedings of the Science Business Society Dialogue conference, Linking science, society, business and policy for the sustainable use of abandoned mines in the SDAC region, 28-30 November 2017, Johannesburg, South Africa, 33-34.

30. RAG (2019). [online] Available at: www.rag.de/ewigkeitsaufgaben/wasserhaltung/ [Accessed 10 May 2019].

31. Ramos E.P., Breede K., Falcone G. (2015). Geothermal heat recovery from abandoned mines: as systematic review of projects implemented worldwide and a methodology for screening new projects. Environ Earth Sci, DOI: 10.1007/s12665-015-4285-y.

32. Röder U. (2015). Geothermische Nutzung von Flutungswässern des Zwickauer Steinkohlereviers. In: Wismut GmbH [eds.]: Reclaimed mining sites between post-remedial care and reuse. Proceedings of the International Mining Symposium WISSYM 2015, Bad Schlema, 31 August – 3 September 2015, 207-214. (in German).

33. Schulz D. (2009). Speicherpotenziale von Pumpspeicherwerken in Tagebaurestlöchern ehemaliger Braunkohlereviere. Forum Netzintegration, Deutsche Umwelthilfe Berlin, 30 September, 29. (in German).

34. Siebers R. (2012). RED Pilot on the Afsluitdijk, The Netherlands. INES, Singapore. [online] Available at: www.deafsluitdijk.nl/wp-content/uploads/2014/06/2012-10-30-Presentatie-door-Rik-Siebers-over-Blue-Energy.pdf [Accessed 19 October 2012].

35. Thema J., Thema M. (2019). Pumpspeicherkraftwerke in stillgelegten Tagebauen am Beispiel Hambach-Garzweiler-Inden. Wuppertal Paper 194, Januar 2019, Wuppertal Institut. [online] Available at: www.epub.wupperinst.org/frontdoor/deliver/index/docId/7211/file/WP194.pdf, 21 [Accessed 20 May 2020].

36. Winde F. (2018). UPHES pre-feasibility: case study South Africa. In: Academy of Science of South Africa: Linking science, society, business and policy for the sustainable use of abandoned mines in the SADC region. Proceedings of the Science business society dialogue conference, 28-30 November 2017, Indaba Hotel, Johannesburg, Gauteng, South Africa, 27-28, DOI: 10.17159/assaf.2018/0025.

37. Winde F., Kaiser F., Erasmus E. (2017). Exploring the use of deep level gold mines in South Africa for underground pumped hydroelectric energy storage schemes. Renewable and Sustainable Energy Reviews, 78, 668-682, DOI: 10.1016/j.rser.2017.04.116.

38. Winde F., Stoch E.J. (2010). Threats and opportunities for post-closure development in dolomitic gold mining areas of the West Rand and Far West Rand (South Africa) – a hydraulic view. Part I: Mining legacy and future threats. Water SA, 36(1), 69-74.

39. Zeller E. (2018). UPHES feasibility: case study Finland. In: Academy of Science of South Africa: Linking science, society, business and policy for the sustainable use of abandoned mines in the SADC region. Proceedings of the science business society dialogue conference, 28-30 November 2017, Indaba Hotel, Johannesburg, Gauteng, South Africa, 30, DOI: 10.17159/assaf.2018/0025.

40. Zhu Q. (2018). Remediating mining legacy sites: case study China. In: Academy of Science of South Africa [ed.] (2018). Proceedings of the Science Business Society Dialogue conference, Linking science, society, business and policy for the sustainable use of abandoned mines in the SDAC region, 28-30 November 2017, Johannesburg, South Africa, 21.


For citation:


Winde F. Turning Water Pollution Sources Into Assets: Exploring Innovative Options Of Using Abandoned Mines For Generating And Storing Renewable Energy. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2020;13(2):6-16. https://doi.org/10.24057/2071-9388-2020-03

Views: 300


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)