Advanced search


Full Text:


The role of arctic and boreal area is crucial in understanding rapidly changing global climate. The climate change itself has an enhanced effect in arctic and boreal areas. On the other hand, several feedback loops and mechanisms could either enhance or decelerate climate change. Besides these interlinks, the territory has enormous natural resources and the way they are utilised in future gives us a direction how to meet global grand challenges and regional impacts. Regionally, effective early warning systems and comprehensive monitoring
will guide in reducing emissions in practise and save natural resources. Here we give insight
into these issues, introduce the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) concept applicable to the PEEX network, and give a roadmap from deep understanding to practical solutions.

About the Authors

Markku Kulmala
University of Helsinki
Russian Federation
Department of Physics

Hanna K. Lappalainen
University of Helsinki, Finnish Meteorological Institute
Russian Federation
Department of Physics

Tuukka Petäjä
University of Helsinki
Russian Federation
Department of Physics

Veli-Matti Kerminen
University of Helsinki
Russian Federation
Department of Physics

Yrjö Viisanen
Finnish Meteorological Institute
Russian Federation

Gennady Matvienko
Institute of Atmospheric Optics, Russian Academy of Sciences
Russian Federation

Vladimir Melnikov
Institute of the Cryosphere of the Earth, Russian Academy of Sciences
Russian Federation

Alexander Baklanov
World Meteorological Organization
Russian Federation

Valery Bondur
AEROCOSMOS Research Institute for Aerospace Monitoring
Russian Federation

Nikolay Kasimov
Lomonosov Moscow State University
Russian Federation
Faculty of Geography

Sergej Zilitinkevich
Department of Physics, Finnish Meteorological Institute, Lomonosov Moscow State University, Nizhny Novgorod State University, Institute of Geography, Russian Academy of Sciences,
Russian Federation


1. ACTRIS-I3 Roadmap (2012) (EU-FP7-ACTRIS-I3), Internal Project Report For European Commission by H.K. Lappalainen (Univ. Helsinki / FMI), M. Kulmala (Univ. Helsinki), G. Pappalardo (CNR-IMAA) P. Laj (CNRS-LGGE), S. Sorvari, Univ. Helsinki / FMI)

2. Alekseychik, P., Lappalainen, H.K., Petäjä, T., Zaitseva, N., Arshinov, M., Shevchenko, V., Makshtas, A., Dubtsov, S., Mikhailov, E., Lapshina, E., Kirpotin, S., Kurbatova, Yuand Kulmala, M. (2016) PEEX potential ground station network: an overview. in press J. Geography Environment, Sustainability.

3. Arneth, A., Harrison, S.P., Tsigaridis, K., Menon, S., Bartlein, P.J., Feichter, H., Korhola, A., Kulmala, M., O’Donell, D., Schurgers, G., Sorvari, S., Vesala, T. and Zaehle, S. (2010) Terrestrial biogeochemical feedbacks in the climate system: from past to future. Nature Geo science, 3, 525–532.

4. Bondur V.G. (2014). Modern Approaches to Processing Large Hyperspectral and Multispectral Aerospace Data Flows. Izvestiya, Atmospheric and Oceanic Physics. Vol. 50. No. 9. P. 840–852. DOI: 10.1134/S0001433814090060.

5. Bondur V.G. (2011) Satellite Monitoring of Wildfires during the Anomalous Heat Wave of 2010 in Russia // Izvestiya, Atmospheric and Oceanic Physics. Vol. 47. No. 9, P. 1039–1048.

6. Baklanov A.A., Bondur V.G., Klaić Z.B. and Zilitinkevich S.S. (2012) Integration of geospheres in Earth systems: Modern queries to environmental physics, modelling, monitoring and education // Geofizika. 2012. № 29 (2). P. 1–4.

7. Baklanov, A., L.T. Molina and M. Gauss, (2015) Megacities, air quality and climate. Atmospheric Environment 126: 235–249.

8. GAW Report No. 207. Recommendations for a Composite Surface-Based Aerosol Network, Emmetten, Switzerland, 28-29 April 2009, 66 pp, November 2012

9. Ghan, S.J., Liu, X., Easter, R.C., Zaveri, R.,Rasch, P.J. and Yoon, J.-H. (2012) Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing, J. Climate, 25, 6461–6476.

10. Guo, S., Hu, M., Zamora, ML., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, MJ. And Zhang, R. (2014) Elucidating severe urban haze formation in China, Proc. Nat. Acad. Sci. USA, 111, 17373–17378.

11. Hari, P., Petäjä, T., Bäck, J., Kerminen, V-M., Lappalainen, H.K., Vihma, T., Laurila, T., Viisanen, Y., Vesala, T. and Kulmala, M. (2015) Conceptual design of a measurement network of the global changeAtmos. Chem. Phys. Discuss., 15, 21063–21093.

12. Hari, P. and Kulmala, M. (2005) Stations for Measuring Ecosystem – Atmosphere Relations (SMEAR II), Boreal Env. Res., 10, 315–322.

13. Hari, P., Andreae, M.O., Kabat, P., and Kulmala, M. (2009) A comprehensive network of measuring stations to monitor climate change, Boreal Env. Res., 14, 442–446.

14. Junninen, H., Lauri, A., Keronen P.I.R., Aalto, P., Hiltunen, V., P. and Kulmala, M. (2009) Smart- SMEAR: on-line data exploration and visualization tool for SMEAR stations, BER 14, 447–457.

15. Kasimov, N.S. et al. (2014) Regions and Cities of Russia: the integrated assessment of ecological state, Moscow, 560 p.

16. Kasimov N.S., Kotlyakov V.M., Chilingarov A.N., Krasnikov D.M., Tikunov V.S. (2015) National Atlas of Arctic: structure and creation approaches. Ice and Snow, 1 (55), 4–14.

17. Kulmala, M., Suni, T., Lehtinen, K.E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto, P., Keronen, P., Hakola, H., Bäck, J., Hoffmann, T., Vesala, T., and Hari, P. (2004) A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4, 557–562, doi:10.5194/acp-4-557-2004.

18. Kulmala M., Arola, A., Nieminen, T., Riuttanen, L., Sogacheva, L., G. de Leeuw G., Kerminen, V.-M. and Lehtinen, K.E.J. (2011) The first estimates of global nucleation mode aerosol concentrations based on satellite measurements, Atmos. Chem. Phys., 11, 10791–10801, doi:10.5194/acp-11-10791-2011.

19. Kulmala, M., Alekseychik, P., Paramonov, M., Laurila, T., Asmi, E., Arneth, A., Zilitinkevich, S., and Kerminen, V.-M. (2011) On measurements of aerosol particles and greenhouse gases in Siberia and future research needs, Boreal Env. Res., 16, 337–362.

20. Kulmala, M., Kontkanen, J., Junninen, J., Lehtipalo, K., Manninen, H., Nieminen, T., Petäjä, T., Sipilä, et al. (2013) Direct Observations of Atmospheric Aerosol Nucleation, 339 (6122), 943–946 DOI: 10.1126/science.1227385.Markku Kulmala et al. AN-EURASIAN EXPERIMENT (PEEX) PROGRAMM: GRAND CHALLENGES...

21. Kulmala, M., Nieminen, T., Nikandrova, A., Lehtipalo, K., Manninen, H.E., Kajos, M.K. and Kerminen, V.-M. (2014a) CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environment Research, 19 (suppl. B), 122–131.

22. Kulmala, M., Petäjä,T., M. Ehn, M., Thornton, J., Sipilä, M., Worsnop, D.R. and Kerminen, V.-M. (2014b) Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation, Annu. Rev. Phys. Chem., 65, 21–37.

23. Kulmala, M, Lappalainen, H.K., Petäjä, T., Kurten, T., Kerminen V.-M., Viisanen, Y., Hari, P., Sorvari, S., Bäck, J., Bondur, V., Kasimov, N., Kotlyakov, V., Matvienko, G., Baklanov, A. Guo, H.D., Ding A., Hansson H.-C. and Zilitinkevich, S. (2015) Introduction: The Pan-Eurasian Experiment (PEEX) – multi-disciplinary, multi- scale and multi-component research and capacity building initiative, Atmos. Chem. Phys., 15, 13085–13096.

24. Kulmala, M (2015) Atmospheric chemistry: China’s choking cocktail, Nature, 526, 497– 499 (22 October 2015), doi:10.1038/526497a.

25. Lappalainen, H.K., Petäjä, T., Kujansuu, J., Kerminen, V-M., Shvidenko, A., Bäck, J., Vesala,, T., Vihma, T., de Leeuw, G., Lauri, A., Ruuskanen,T., Lapshin V., Zaitseva, N., Glezer, O., Arshinov,M., Spracklen, D.V., Arnold, S.R., Juhola, S., Lihavainen, H., Viisanen, Y., Chubarova, N., Chalov, S., Filatov, N., Skorokhod,A., Elansky, N., Dyukarev, E., Esau,, I., Hari, P., Kotlyakov, V., Kasimov, N., Bondur, V., Matvienko, G., Baklanov, A., Mareev, E., Troitskaya, Y., Ding, A., Guo, H., Zilitinkevich, S. and Kulmala, M. (2014) Pan-Eurasian Experiment (PEEX) – a research initiative meeting the grand challenges of the changing environment of the northern Pan- Eurasian arctic-boreal areas, J. Geography Environment Sustainability, 2 (7), 13–48.

26. Lappalainen, H.K., Kerminen, V., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J. et al. (2016) Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land – atmosphere – ocean-society continuum in the Northern Eurasian region, to be submitted ACP.

27. Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D. and Pozzer, A. (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371.

28. Nie, W., Ding, A., Wang, T., Kerminen, V.-M., George, C., Xue, L.,Wang, W., Zhang, Q, Petäjä, T., Qi, X., Gao, X., Wang, X, Yang, X., Fu, C. and Kulmala, M. (2014) Polluted dust promotes new particle formation and growth. Sci. Rep. 4, 6634, doi: 10.1038/srep06634.

29. Petäjä, T., Järvi, L., Kerminen, V.-M., Ding, A., Sun, J., Nie, W., Kujansuu, J., Virkkula, A., Yang, X., Fu, C., Zilitinkevich, S. and Kulmala, M. (2015) Enhanced air pollution via aerosolboundary layer feedback in China, Scientific Reports, (accepted).

30. Raes, F., Liao, H., Chen, W.-T. and Seinfeld, J.H. (2010), Atmospheric chemistry: climate feedbacks, J. Geophys. Res., 115. D12121, doi:10.1029/2009JD013300.

31. Schutgens, N.A. J. and Stier, P. (2014) A pathway analysis of global aerosol processes, Atmospheric Chemistry & Physics, Vol. 14 Issue 21, p. 11657–11686.

32. Shindell, D., Kuylenstierna, J.C.I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S.C., Muller, N., Janssens-Maenhout G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K.,. Kim Oanh N.Y., K., Milly, G., Williams, M., Demkine, V., and Fowler D. (2012) Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security, Science, 335, 183–188.

33. Smith, L.C. (2010) The World in 2050: four forces shaping civilization’s northern future, Brockman Inc.

34. Stocker, B.D., Roth, R., Joos, F., Spahn, R., Steinacher, M., Zaehle, S., Bouwman, L., Xu-Ri and Iain Colin Prentice I.C., (2013) Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios, Nature Climate Change, 3, 666–672, doi:10.1038/nclimate1864.

35. Unger, N., (2014) Human land-use-driven reduction of forest volatiles cools global climate, Nature Climate Change, 4.10, 907–910, DOI: 10.1038/nclimate2347.

36. Wanner, H., Beer, J. Bütikofer, T.J., Crowley, U. Cubasch, Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M.and Widmann, M., (2008) Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 27, 1791–1828.

37. Westervelt, D.M., L.W. Horowitz, V. Naik, J.-C. Golaz, and D.L. and Mauzerall, (2015): Radiative forcing and climate response to projected 21st century aerosol decreases, Atmos. Chem. Phys., 15, 12681–12703, doi:10.5194/acp-15-12681-2015.

38. WMO GAW (2014) The Global Atmosphere Watch Programme 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses. W MO-No. 114 3, World Meteorological Organization, Geneva, 48 pp. ISBN 978-92-63-11143-2.

39. World Health Statistics 2014 (World Health Organization, Geneva, Switzerland, ISBN 978- 92-4–156471-7).

40. Xiao, S., Wang, M.Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J.M., Wang, D.F., Fu, Q.Y., Worsnop, W.R. and Wang, L. (2015) Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 15 (4): 1769–1781.

41. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C. and Baklanov, A. (2012) Real-time air quality forecasting, part I: History, techniques, and current status, Atmos. Environ., 60, 656–676.

42. Zilitinkevich, S., Kulmala, M., Esau, I. and Baklanov, A (2015) Megacities – Refining Models to Client Environment, WMO Bulletin 64 (1), 20–22.

For citation:

Kulmala M., Lappalainen H.K., Petäjä T., Kerminen V., Viisanen Y., Matvienko G., Melnikov V., Baklanov A., Bondur V., Kasimov N., Zilitinkevich S. PAN-EURASIAN EXPERIMENT (PEEX) PROGRAM: GRAND CHALLENGES IN THE ARCTIC-BOREAL CONTEXT. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2016;9(2):5-18.

Views: 245

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2071-9388 (Print)
ISSN 2542-1565 (Online)