PAN-EURASIAN EXPERIMENT (PEEX) PROGRAM: GRAND CHALLENGES IN THE ARCTIC-BOREAL CONTEXT
https://doi.org/10.15356/2071-9388_02v09_2016_01
Abstract
will guide in reducing emissions in practise and save natural resources. Here we give insight
into these issues, introduce the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) concept applicable to the PEEX network, and give a roadmap from deep understanding to practical solutions.
About the Authors
Markku KulmalaRussian Federation
Department of Physics
Hanna K. Lappalainen
Russian Federation
Department of Physics
Tuukka Petäjä
Russian Federation
Department of Physics
Veli-Matti Kerminen
Russian Federation
Department of Physics
Yrjö Viisanen
Russian Federation
Gennady Matvienko
Russian Federation
Vladimir Melnikov
Russian Federation
Alexander Baklanov
Russian Federation
Valery Bondur
Russian Federation
Nikolay Kasimov
Russian Federation
Faculty of Geography
Sergej Zilitinkevich
Russian Federation
References
1. ACTRIS-I3 Roadmap (2012) (EU-FP7-ACTRIS-I3), Internal Project Report For European Commission by H.K. Lappalainen (Univ. Helsinki / FMI), M. Kulmala (Univ. Helsinki), G. Pappalardo (CNR-IMAA) P. Laj (CNRS-LGGE), S. Sorvari, Univ. Helsinki / FMI)
2. Alekseychik, P., Lappalainen, H.K., Petäjä, T., Zaitseva, N., Arshinov, M., Shevchenko, V., Makshtas, A., Dubtsov, S., Mikhailov, E., Lapshina, E., Kirpotin, S., Kurbatova, Yuand Kulmala, M. (2016) PEEX potential ground station network: an overview. in press J. Geography Environment, Sustainability.
3. Arneth, A., Harrison, S.P., Tsigaridis, K., Menon, S., Bartlein, P.J., Feichter, H., Korhola, A., Kulmala, M., O’Donell, D., Schurgers, G., Sorvari, S., Vesala, T. and Zaehle, S. (2010) Terrestrial biogeochemical feedbacks in the climate system: from past to future. Nature Geo science, 3, 525–532.
4. Bondur V.G. (2014). Modern Approaches to Processing Large Hyperspectral and Multispectral Aerospace Data Flows. Izvestiya, Atmospheric and Oceanic Physics. Vol. 50. No. 9. P. 840–852. DOI: 10.1134/S0001433814090060.
5. Bondur V.G. (2011) Satellite Monitoring of Wildfires during the Anomalous Heat Wave of 2010 in Russia // Izvestiya, Atmospheric and Oceanic Physics. Vol. 47. No. 9, P. 1039–1048.
6. Baklanov A.A., Bondur V.G., Klaić Z.B. and Zilitinkevich S.S. (2012) Integration of geospheres in Earth systems: Modern queries to environmental physics, modelling, monitoring and education // Geofizika. 2012. № 29 (2). P. 1–4.
7. Baklanov, A., L.T. Molina and M. Gauss, (2015) Megacities, air quality and climate. Atmospheric Environment 126: 235–249.
8. GAW Report No. 207. Recommendations for a Composite Surface-Based Aerosol Network, Emmetten, Switzerland, 28-29 April 2009, 66 pp, November 2012
9. Ghan, S.J., Liu, X., Easter, R.C., Zaveri, R.,Rasch, P.J. and Yoon, J.-H. (2012) Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing, J. Climate, 25, 6461–6476.
10. Guo, S., Hu, M., Zamora, ML., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, MJ. And Zhang, R. (2014) Elucidating severe urban haze formation in China, Proc. Nat. Acad. Sci. USA, 111, 17373–17378.
11. Hari, P., Petäjä, T., Bäck, J., Kerminen, V-M., Lappalainen, H.K., Vihma, T., Laurila, T., Viisanen, Y., Vesala, T. and Kulmala, M. (2015) Conceptual design of a measurement network of the global changeAtmos. Chem. Phys. Discuss., 15, 21063–21093.
12. Hari, P. and Kulmala, M. (2005) Stations for Measuring Ecosystem – Atmosphere Relations (SMEAR II), Boreal Env. Res., 10, 315–322.
13. Hari, P., Andreae, M.O., Kabat, P., and Kulmala, M. (2009) A comprehensive network of measuring stations to monitor climate change, Boreal Env. Res., 14, 442–446.
14. Junninen, H., Lauri, A., Keronen P.I.R., Aalto, P., Hiltunen, V., P. and Kulmala, M. (2009) Smart- SMEAR: on-line data exploration and visualization tool for SMEAR stations, BER 14, 447–457.
15. Kasimov, N.S. et al. (2014) Regions and Cities of Russia: the integrated assessment of ecological state, Moscow, 560 p.
16. Kasimov N.S., Kotlyakov V.M., Chilingarov A.N., Krasnikov D.M., Tikunov V.S. (2015) National Atlas of Arctic: structure and creation approaches. Ice and Snow, 1 (55), 4–14.
17. Kulmala, M., Suni, T., Lehtinen, K.E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, Ü., Aalto, P., Keronen, P., Hakola, H., Bäck, J., Hoffmann, T., Vesala, T., and Hari, P. (2004) A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4, 557–562, doi:10.5194/acp-4-557-2004.
18. Kulmala M., Arola, A., Nieminen, T., Riuttanen, L., Sogacheva, L., G. de Leeuw G., Kerminen, V.-M. and Lehtinen, K.E.J. (2011) The first estimates of global nucleation mode aerosol concentrations based on satellite measurements, Atmos. Chem. Phys., 11, 10791–10801, doi:10.5194/acp-11-10791-2011.
19. Kulmala, M., Alekseychik, P., Paramonov, M., Laurila, T., Asmi, E., Arneth, A., Zilitinkevich, S., and Kerminen, V.-M. (2011) On measurements of aerosol particles and greenhouse gases in Siberia and future research needs, Boreal Env. Res., 16, 337–362.
20. Kulmala, M., Kontkanen, J., Junninen, J., Lehtipalo, K., Manninen, H., Nieminen, T., Petäjä, T., Sipilä, et al. (2013) Direct Observations of Atmospheric Aerosol Nucleation, 339 (6122), 943–946 DOI: 10.1126/science.1227385.Markku Kulmala et al. AN-EURASIAN EXPERIMENT (PEEX) PROGRAMM: GRAND CHALLENGES...
21. Kulmala, M., Nieminen, T., Nikandrova, A., Lehtipalo, K., Manninen, H.E., Kajos, M.K. and Kerminen, V.-M. (2014a) CO2-induced terrestrial climate feedback mechanism: From carbon sink to aerosol source and back. Boreal Environment Research, 19 (suppl. B), 122–131.
22. Kulmala, M., Petäjä,T., M. Ehn, M., Thornton, J., Sipilä, M., Worsnop, D.R. and Kerminen, V.-M. (2014b) Chemistry of Atmospheric Nucleation: On the Recent Advances on Precursor Characterization and Atmospheric Cluster Composition in Connection with Atmospheric New Particle Formation, Annu. Rev. Phys. Chem., 65, 21–37.
23. Kulmala, M, Lappalainen, H.K., Petäjä, T., Kurten, T., Kerminen V.-M., Viisanen, Y., Hari, P., Sorvari, S., Bäck, J., Bondur, V., Kasimov, N., Kotlyakov, V., Matvienko, G., Baklanov, A. Guo, H.D., Ding A., Hansson H.-C. and Zilitinkevich, S. (2015) Introduction: The Pan-Eurasian Experiment (PEEX) – multi-disciplinary, multi- scale and multi-component research and capacity building initiative, Atmos. Chem. Phys., 15, 13085–13096.
24. Kulmala, M (2015) Atmospheric chemistry: China’s choking cocktail, Nature, 526, 497– 499 (22 October 2015), doi:10.1038/526497a.
25. Lappalainen, H.K., Petäjä, T., Kujansuu, J., Kerminen, V-M., Shvidenko, A., Bäck, J., Vesala,, T., Vihma, T., de Leeuw, G., Lauri, A., Ruuskanen,T., Lapshin V., Zaitseva, N., Glezer, O., Arshinov,M., Spracklen, D.V., Arnold, S.R., Juhola, S., Lihavainen, H., Viisanen, Y., Chubarova, N., Chalov, S., Filatov, N., Skorokhod,A., Elansky, N., Dyukarev, E., Esau,, I., Hari, P., Kotlyakov, V., Kasimov, N., Bondur, V., Matvienko, G., Baklanov, A., Mareev, E., Troitskaya, Y., Ding, A., Guo, H., Zilitinkevich, S. and Kulmala, M. (2014) Pan-Eurasian Experiment (PEEX) – a research initiative meeting the grand challenges of the changing environment of the northern Pan- Eurasian arctic-boreal areas, J. Geography Environment Sustainability, 2 (7), 13–48.
26. Lappalainen, H.K., Kerminen, V., Petäjä, T., Kurten, T., Baklanov, A., Shvidenko, A., Bäck, J. et al. (2016) Pan-Eurasian Experiment (PEEX): Towards holistic understanding of the feedbacks and interactions in the land – atmosphere – ocean-society continuum in the Northern Eurasian region, to be submitted ACP.
27. Lelieveld, J., Evans, J.S., Fnais, M., Giannadaki, D. and Pozzer, A. (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale, Nature, 525, 367–371.
28. Nie, W., Ding, A., Wang, T., Kerminen, V.-M., George, C., Xue, L.,Wang, W., Zhang, Q, Petäjä, T., Qi, X., Gao, X., Wang, X, Yang, X., Fu, C. and Kulmala, M. (2014) Polluted dust promotes new particle formation and growth. Sci. Rep. 4, 6634, doi: 10.1038/srep06634.
29. Petäjä, T., Järvi, L., Kerminen, V.-M., Ding, A., Sun, J., Nie, W., Kujansuu, J., Virkkula, A., Yang, X., Fu, C., Zilitinkevich, S. and Kulmala, M. (2015) Enhanced air pollution via aerosolboundary layer feedback in China, Scientific Reports, (accepted).
30. Raes, F., Liao, H., Chen, W.-T. and Seinfeld, J.H. (2010), Atmospheric chemistry: climate feedbacks, J. Geophys. Res., 115. D12121, doi:10.1029/2009JD013300.
31. Schutgens, N.A. J. and Stier, P. (2014) A pathway analysis of global aerosol processes, Atmospheric Chemistry & Physics, Vol. 14 Issue 21, p. 11657–11686.
32. Shindell, D., Kuylenstierna, J.C.I., Vignati, E., van Dingenen, R., Amann, M., Klimont, Z., Anenberg, S.C., Muller, N., Janssens-Maenhout G., Raes, F., Schwartz, J., Faluvegi, G., Pozzoli, L., Kupiainen, K., Höglund-Isaksson L., Emberson, L., Streets, D., Ramanathan, V., Hicks, K.,. Kim Oanh N.Y., K., Milly, G., Williams, M., Demkine, V., and Fowler D. (2012) Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security, Science, 335, 183–188.
33. Smith, L.C. (2010) The World in 2050: four forces shaping civilization’s northern future, Brockman Inc.
34. Stocker, B.D., Roth, R., Joos, F., Spahn, R., Steinacher, M., Zaehle, S., Bouwman, L., Xu-Ri and Iain Colin Prentice I.C., (2013) Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios, Nature Climate Change, 3, 666–672, doi:10.1038/nclimate1864.
35. Unger, N., (2014) Human land-use-driven reduction of forest volatiles cools global climate, Nature Climate Change, 4.10, 907–910, DOI: 10.1038/nclimate2347.
36. Wanner, H., Beer, J. Bütikofer, T.J., Crowley, U. Cubasch, Flückiger, J., Goosse, H., Grosjean, M., Joos, F., Kaplan, J.O., Küttel, M., Müller, S.A., Prentice, I.C., Solomina, O., Stocker, T.F., Tarasov, P., Wagner, M.and Widmann, M., (2008) Mid- to Late Holocene climate change: An overview. Quat. Sci. Rev. 27, 1791–1828.
37. Westervelt, D.M., L.W. Horowitz, V. Naik, J.-C. Golaz, and D.L. and Mauzerall, (2015): Radiative forcing and climate response to projected 21st century aerosol decreases, Atmos. Chem. Phys., 15, 12681–12703, doi:10.5194/acp-15-12681-2015.
38. WMO GAW (2014) The Global Atmosphere Watch Programme 25 Years of Global Coordinated Atmospheric Composition Observations and Analyses. W MO-No. 114 3, World Meteorological Organization, Geneva, 48 pp. ISBN 978-92-63-11143-2.
39. World Health Statistics 2014 (World Health Organization, Geneva, Switzerland, ISBN 978- 92-4–156471-7).
40. Xiao, S., Wang, M.Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J.M., Wang, D.F., Fu, Q.Y., Worsnop, W.R. and Wang, L. (2015) Strong atmospheric new particle formation in winter in urban Shanghai, China. Atmospheric Chemistry and Physics, 15 (4): 1769–1781.
41. Zhang, Y., Bocquet, M., Mallet, V., Seigneur, C. and Baklanov, A. (2012) Real-time air quality forecasting, part I: History, techniques, and current status, Atmos. Environ., 60, 656–676.
42. Zilitinkevich, S., Kulmala, M., Esau, I. and Baklanov, A (2015) Megacities – Refining Models to Client Environment, WMO Bulletin 64 (1), 20–22.
Review
For citations:
Kulmala M., Lappalainen H.K., Petäjä T., Kerminen V., Viisanen Y., Matvienko G., Melnikov V., Baklanov A., Bondur V., Kasimov N., Zilitinkevich S. PAN-EURASIAN EXPERIMENT (PEEX) PROGRAM: GRAND CHALLENGES IN THE ARCTIC-BOREAL CONTEXT. GEOGRAPHY, ENVIRONMENT, SUSTAINABILITY. 2016;9(2):5-18. https://doi.org/10.15356/2071-9388_02v09_2016_01